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Abstract

Many engineering or mathemnaical problemns require to factrie strwucred matrices (Toe-
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tion of the given structured matrix.; the desired results can then be read off from the resulting

array. Thewe 'fast array algorithmna require 0 (n) operations for LU and QR factorizations of

m, x n stucwrmd matrices. and 0 (ma) or even 0 (n logen) operations for solving matrix equa-

dns. Also the arMY form suggests various altentve algorithms, depeniding upon the order in

which die trnfr atin applied. these variation can have diffezen numerical properties
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Our algorithin is bad on a generalized definition of displacement for block-Toepli

(Hankel) and Toepili (Harkel)-bltock matrices sligh~tly extending the previous definitions of

Kailath. Kunig and Morf (1979) and Lev-Ari and Kailath (1984). An important property of
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that Toepli zHaand)-dved (nearToepits Toeplitz-like. etc) matrice are perhaps best
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Abstract

Many engineering or mathematical problems require to factorize structured matrices (Toe-

plitz, Hankel, Vandermonde, products of such matrices and their inverses. Schur complements,

etc) either in explicit or in disguised form. Consequently there exist various analytic tools

regarding structured matrices as well as several fast factorization algorithms. In this thesis, we

show that many of these results and several significant generalizations can be obtained in a

very constructive way. The generic form is to use elementary circular and hyperbolic transfor-

mations to triangularize a certain array of numbers derived from the displacement representa-

tion of the given structured matrix; the desired results can then be read off from the resulting

array. These "fast array algorithms" require O (mn) operations for LU and QR factorizations of

m x n structured matrices, and 0 (inn) or even 0 (n log2n) operations for solving matrix equa-

tions. Also the array form suggests various alternative algorithms, depending upon the order in

which the transformations are applied; these variations can have different numerical properties

and lead to different implementations.

Our algorithm is based on a generalized definition of displacement for block-Toeplitz

(Hankel) and Toeplitz (Hankel)-block matrices slightly extending the previous definitions of

Kalath, Kung and Morf (1979) and Lev-Ari and Kailath (1984). An important property of

displacement structure is that it is preserved under Schur complementations. It will turn out

that Toeplitz-(Hankel)-derived (near-Toeplitz, Toeplitz-like, etc) matrices are perhaps best

iv



regarded as particular Schur complements obtained from suitably defined block matrices. The

displacement structure is used to obtain a generalized Schur algorithm for the fast triangular

and orthogonal factorizations of all such matrices, and well structured fast solutions of the

corresponding exact and overdetermined systems of linear equations.
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Chapter 1.

Introduction.

Fast algorithms for factorizing structured matrices that include Toeplitz, Hankel and Van-

dermonde matrices have a long history. The earliest known fast algorithm is probably the

Euclidean algorithm, which has recently been recognized as providing a fast factorization of

Hankel matrices [141. Factorizations of Hankel matrices also underlie the criteria and the fast

algorithms (due to Hermite (1856), Hurwitz (1895) and Routh (1875)) for checking the root

distributions of a polynomial with respect to imaginary axis (See [45] for recent generaliza-

tions). More recently, in the context of decoding BCH codes Berlekamp and Massey [51, [48]

gave a fast algorithm that factorizes the inverse of a Hankel matrix (See also [9], [141, [41].

[54]).

Fast algorithms for Toeplitz matrices have an even richer history [33-34]. Caratheodory

(1911) and Toeplitz (1911) showed that the positive-realness of certain functions is equivalent

to the positive-definiteness of certain Toeplitz matrices [1]. Later, Schur (1917) gave a fast

algorithm that checks the positive-realness, and in fact, also factorizes close-to-Toeplitz

matrices f33-34], [441, [59]. The Schur algorithm has also appeared in different contexts not-

ably in seismic deconvolution problems as the so-called "layer-peeling" method [11], 135],

[571, in orthogonal filter synthesis [17], [56] and in checking the root location of a polynomial

with respect to the unit circle (33-34]. Bareiss (4] also rediscovered the Schur algorithm as a
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fast method of solving Toeplitz systems of equations.

There is another class of fast algorithms that factorize the inverse of Toeplitz matrices.

They include the recursions of the Szego orthogonal polynomials [62] and the Levinson algo-

rithm [46]. As closely related results, there are the Gohberg-Semencul formulas [21-23] and

the Trench recursion [63].

In 1972, Kailath [29] [31] developed fast algorithms for Kalman filters associated with

continuous-time constant parameter state-space models. These algorithms replaced the non-

linear Riccati differential equations of the Kalman filter with another set of nonlinear equations

that he dubbed the Chandrasekhar equations because equations of somewhat the same form had

been developed by Chandrasekhar and Ambarzumian for solving certain Wiener-Hopf integral

equations encountered in radiative transfer theory [12], [601. The discrete-time versions of

these results were developed by Kailath, Morf and Sidhu (see [37], [38]). Various extensions

were made jointly by them along with Ljung and Friedlander, and nice interpretations were

found in terms of scattering theory. In the course of this work, it became clear that there were

close relations between these state-space results and the Levinson and Schur algorithms for

solving Toeplitz equations and factoring Toeplitz matrices (see the review paper [30], [32],

which contains many references). As noted therein, Kailath et. at. found that the key concept

enabling the different fast algorithms was what they called DISPLACEMENT STRUCTURE.

This is in many ways a natural generalization of Toeplitz structure; for example, the inverse of

a Toeplitz matrix is not in general Toeplitz, but all matrices and their inverses have the same

displacement rank. Structured matrices (Toeplitz, Hankel, Vandermonde, products of such

matrices and their inverses, Schur complements with respect to various entries, etc) all have

low displacement rank. The complexity of numerical computations with structured matrices

depends upon their displacement rank. The concept of displacement rank has been developed.

extended and applied in many ways by Kailath and his students and colleagues (Mort, Sidlu,
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Dickinson, Ljung, Kung, Friedlander, Verghese, Vieira, Levy, Lee, Lev-Ani, Delosme, Porat,

Cioffi, Bruckstein, Citron, Bistritz, Rao, Dewilde, Dym, DePrettere, Pal) - see the review paper

[341.

As the reader may have anticipated from the above discussion, the various results men-

tioned therein have been developed and presented using a variety of algebraic and analytic

tools. The main contribution of this thesis is to show that the above results, and several

significant generalizations, can be obtained in a very constructive (or algorithmic) way. (At

least, we have so far shown this for many of the earlier results; with more work, one might

anticipate being able to replace "many" by "all". - see the remarks in the last chapter).

The generic form is to use elementary circular and hyperbolic transformations to triangu-

larize a certain array of numbers derived from the displacement representation of the given

structured matrix; the desired results can then be read off from the resulting array. This new

array form suggests various alternative algorithms, depending upon the order in which the

transformations are applied; these variations can have different numerical properties and lead to

different implementations.

The basic ideas can be seen from the simple examples in the next section. However, it

may be noted here that such array form algorithms were introduced into least-squares problems

independently by Golub [241 and by Dyer and McReynolds [18], and further developed by

Bierman [61, among others. Generalizations for Riccati and Chandrasekhar recursions were

introduced under the name square-root algorithms by Morf and Kailath [501.

1. Prototype Examples.

In this Chapter, we shall explain the basic idea of the fast algorithms for structured

matrices. To provide some motivation, we shall also briefly introduce several problems that

involve structured matrices.
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Simultaneous Factorization of T and T - '.

Let T be a Toeplitz matrix

Co l C0  -C I CO0 Ca_2

T= , Co=1.

Cn- Cx-2 CO

Then it is easy to check that T can be expressed in the so-called displacement form [33-36],

r = L(x,)Lr(x) - L(x ,2)L,(x), (1)

where L (x) denotes the lower-triangular Toeplitz matrix with the first column x. and

XI = [1, CI, C2 , , c._]T, x2 = 10, c 1, c 2, • •,- .

Now we form a pre-array

L(x,) L ((2)a = / ,(2)

and post-multiply A with any J-orthogonal matrix 8, viz., one that satisfies

e O =J, J - 1,

that will yield a triangular post-array

Ae=[ L2]= say. (3)

Then it turns out that

T = LIL, = L 2UUT LL (4)

The proof is very simple. We just compare entries in the identity

AIAT = AeJOTAT = if r .

From (2) and (3), we have

L(x,)LT(x) - L(x 2)Lr(x2) L(x1) - L(x2)l
AJA = L -Lr(X - LT(x2) 0 jI (Sa)

LIL T LU ]
I ULr uurt2L["2
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Now equating corresponding entries gives

L I = L (x)LT(x) - L (x)LT(x2)
ULT LT(xi) - LT(x 2) = I

UUT -L 2L = O.

Therefore,

TTT = LL ,

-l= LjTLiI =UUT =L 2L.

Remark. Determining the AR parameters of a random process requires solving a special Toe-

plitz systems of equations called the Yule-Walker equation (or Normal equation). The Yule-

Walker equation has a special right-side vector, viz., the last column of the Toeplitz matrix

shifted by one position. One can easily prove that the solution of Yule-Walker equation is the

normalized last column of the upper triangular matrix U, where T1-= UUT. Similarly,

decoding BCH codes requires solving the Hankel system of equations whose right-side vector

is the last column of the Hankel matrix shifted by one position. The factorization of the inverse

of the Hankel matrix also gives the solution for such equations.

We still need to show how to find such a matrix . This can be done in many ways.

One is as a sequence of hyperbolic rotations,

-k

Hij(k) 0 -k -I2 IkI < 1,

I
where k is called the reflection coefficient or Schur parameter. Let us consider a row vector

xT e RIxx, and Hij(k). where k =xjXj, the ratio of the jth and ith elements. With this

choice, we will have

[ i • • Xj • ] • Hij(k) X= [. • 0{ X• O. • q T. : Z-7,
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where only the i th and jth elements of x are altered. Clearly, we can introduce a zero at any

position in the pre-array by post-multiplying the pre-array with an appropriate hyperbolic rota-

tion.

We shall illustrate the annihilation procedure with a 3 x 3 Toeplitz matrix,

T= ¢I I 1 •

C2 Cl

We first form a pre-array A, and post-multiply A by H 2.4(c 1) to annihilate an element c I in the

(1, 2) block, resulting in A,:

1 1

c I 1 cI cl d,

C2 C 1 I C2 C1  C2 d 2 I d 3 cI

1-= I 1 ' M. 4(c)- I d 4  d5  -A1 .

1 d 5  d 4 1
1 1 1 1

Now, we annihilate the remaining cI in the (1, 2) block with H 3,.s(c1 ) and the last element d 3

in the (1, 2) block with H 3,4 (d3ldl) resulting in the post-array A:

1 I

cl d, cl d,

C2 d2 d, d3  d 3  c 2 d2 el
AIH 3.5(c 1) = 1 d4  d5  A 2 A2 H3,4(.) d 1 d 4 e2 e 4  A.

d 5 d4 d 4 d 5  ds 3 e 3 d5

dj d 4 1 e 4 e 2 d4 I

Note that the Toeplitz structure allows the whole subdiagonal in the (1,2) block to be nulled-

out with hyperbolic rotations having the same reflection coefficient k . This suggests that we

can keep only two columns and operate on them as shown below:
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1 0 0 0 00
cl Cl 1 c, d I 0

C2 C2  CI C2  d2 d13X =1,X( )  X ('X)H -2(c = 1) d4d5 (6a)

0 0 1 0 d5 d 4

0 0. 0 0 0 0

0 0 00
0 0 00
dt d3  (" d3 el 0X1)=" 1 X ":(-) ) 1.2 - RX2. (6b)
0 d5 d, e 2 e4(b

d4 d4 e3 e3

d5 0 J e4 e2.

The entries in X, X1 and X2 completely determine the matrices of LI, L2 and U. This con-

struct can be regarded as a combined form of Schur algorithm [33-34], [59] (see also [4], [42-

441, [55]) and Levinson algorithm [461. We remark also on the simplicity of the algorithm

description and justification.

By inspecting (6), the overall operation count for finding LI, L2 and U for an n x n

Toeplitz matrix T can be seen to be

2i4i = 4n2 + O(n).
i=i

This count can be reduced by half if we use fast rotations (see [131 for details).

QR factorization of T [13].

Similar ideas can be used for finding the fast QR factorization of a Toeplitz matrix T.

First, it is not hard to check that TTT and T have the displacement forms,

TTT = L(w)LT(w,) + L(w2)LT(w2) - L(w3)LT(w3) - L (w4)LT(w4),

T = L(v,)LT(w) + L(v2)LT(w2) - L(v3)LT(w3) - L(v4)LT(w4),

where the vectors wi and vi am defined as

wI=Trt/IIItI, w2 =t 2, w3 =ZnZTwI, W4 =-

v=-v 3 -t/IIttII, v2 =e, v4=0,
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where Z. denotes the n x n shift matrix (i.e., the matrix with l's on the first sub-diagonal and

O's elsewhere), and

t, =_ [t o, t1,•, t ,_]T
,  t2 = [0, t-1 •, t 1_.]IT,  I11 [t.._, ,  t , fr-I T.

Now we form a pre-array

L(w,) L(w,) L(w,) L(w 4)]
r L(v) L(v2) L(v 3) L(v)J'

and post-multiply r with any J-orthogonal matrix, where

In

that will annihilate the (1, 2), (1, 3) and (1, 4) blocks of 1, and triangularize the (1, 1) block of

r:

T 001irre=[Q ,

Again by equating each entry of U Fr and 'J r-, we shall have

TTT = RTR, T = QR.

Note that the matrix Q is orthogonal because

QTQ = R-TTTTTR-I = R -TRTRR-I = i.

In this application, the J-orthogonal matrix e can be constructed as a sequence of hyper-

bolic rotations and circular (or Givens rotations),

I
--k

Gij(k) = k I
Sl + k2 )

Simplicity of the above algorithmi and its justification may be compared with dhe previously
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known fast QR factorization algorithms.

2. Some Examples of Structured Matrices.

How about the factorization of non-Toeplitz matrices and their inverses? In many signal

processing problems, one needs to solve structured matrix equations or to factorize structured

matrices either implicitly or explicitly [33-34]. [42-441. Some examples [33-341 involving

Toeplitz or Toeplitz-like matrices are the Schur-Cohn test (for checking if a polynomial has a

root outside the unit disk), orthogonal filter synthesis, finding AR filter [391 and certain inverse

scattering problems (ill, [35]. On the other hand, certain decoding algorithms for BCH codes

[141. [411 require the factorization of Hankel matrices, and finding interpolating polynomials

needed to solve Vandermonde matrix equations. In this section we shall present some well-

known examples bringing in structured matrices.

Example 1 Two Dimensional Filtering with finite Samples.

Let [yij I and { i,/) be uncorrelated Gaussian random images, and suppose we observe

(yijI,

Yij -" Xi j + 1,i"
Let the image planes be stationary, i.e.,

E[yijykjI = dk-i j-j E[lijljJ =fk-iJ-j.

It is desired to find the estimator based on the measurements in the square region centered at

(i, j)

lij =E[xijlyj :i-m <k :i+m,j-m <1 < j+m
i+M j+m
Z Z atjytj. (7)

k-i--m Iuj-m

The coefficients in (7) can be found from the orthogonality principle [321,

E[(Qij - xij)yij] = 0

leading to the following block-Toeplitz. Toeplitz-block (or doubly Toeplitz) system of
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equations,

T, o  T2, ai--M+ g--M+1
..1 , (8)

T2m T2,-1 To ai+,. g,,

where

[Tk1iji = dk.i-j R (2-+ )x(2 + ')

ak = (a,., , akt+m] T r R ,

gk = " ", gk] 7 E R2C"'+)x', gij a dij -fij.

The algorithms to be described in Chapter 2 can be used to solve (8) with 0 (m 5) operations.

Example 2 Numerical Solution of Integral Equations [19], [47]. [52], [58].

In some signal processing applications, we need to solve certain integral equations, such

as the Wiener-Hopf equation.

rY (t+A) = Lry, (t-)h (r)dc, t > 0, (9a)

or the equation that arises in inverse filtering [27] for image restoration,

g(x, y) = fJf'h (x--m y-)f (a, P)d ad P. (9b)

The equation (9b) is usually solved numerically after discretization using some quadrature for-

mula, which will yield a matrix equation. It is known that solving an integral equation of the

form (9) is inht.,ently an ill-posed (ill-conditioned) problem. For simplicity let us consider the

single variable case,
b

g(x) = K(x. y)f (y)dy. (10)

Phillips [521 gives a good discussion of the difficulty involved. Following Phillips, let

f,,,(y) a sin(my). Then for any integrable kernel K(x, y), it is known that

g• fK(x,y)f(y)dy - 0 as m--.

Therefore, an infinitesimal perturbation g. in g can cause a finite perturbation f. in f. Also,

one would expect that g, -+ 0 (as m -- as) faster for flat smooth kernels than for sharply
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peaked kernels. Let

Kf= g (11)

be the matrix equation obtained from (10) by some discretization procedure. If we refine the

discretization, then the ill-conditioned kernel would appear as an rn-conditioned matrix. On the

other hand, if we use a large mesh width, the transformation from the integral equation to the

matrix equation can be ill-conditioned, and therefore we may be solving a (possibly well-

conditioned) different problem.

One way to try to overcome this difficulty is via regularization. The ill-conditioning

manifests itself as an oscillatory solution f (x). Therefore, it is reasonable to constrain the

solution to have some smoothness, e.g., to require that

f ')(X )dx < r,

or after discretization

I IL(n)f112 < 7- (12)

For example when n = I and 2,

f(')(x)Ax =f(x +Ax)-f(x), f(2)Ax =f(x +Ax)-2f(x)+f(x -Ax).

Therefore,

I-1 1-2 1

1-1 1 -21
0() "' L (2)=, ",

1-I 1 -2 1

Now, we solve the following constrained minimization problem rather than (I1),

minlfKf-g112 subjectto" IIL(n)fII2 =Y. (13)f

To solve (13), we form the Lagrange function

t The comtraint in (12) is uuly acive.

-i
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F(f, q) m IEKf - g1 2 +TI(IILfI1 12-y),

and from -F(f, 71) = 0, we getaf

(KTK + TILTL)f = KTg. (14a)

This can be recognized as seeking the least squares solution to the linear system

The Lagrange multiplier 11 is usually chosen by trial and error. If L is the identity matrix, then

this method reduces to the so-called "damped least squares method" (also see [25, pp. 145,

P6.1-9] for computing approximate pseudo inverses with this technique).

For the convolutional kernel, the matrix K is Toeplitz, and the matrix 4] is close-to-

Toeplitz. The algorithms to be discussed in Chapter 2 can be used to solve (14) in 0 (n2)

operations.

Example 3 Maximum Likelihood Estimation of ARMA Parameters [31, [40, pp. 125-1271.

Let (y(t)} and (e(t)) satisfy the difference equation

y(t) + afy(t-l) + -- + apy(t-p) = e(t) + cle(t-1) +. + + ce(t-q) (15)

where e (t) is a zero-mean white Gaussian process with variance a2,

A(z)iz P + a z P- ' + . .- + a, *0 for IzI<l,

C(z)z q +czq-l+..+cq 0 for Izl<l,

and {ai), (ci) are unknown deterministic constants. Given measurements

YN a [y (N),.. y (0), y(_-l).. y (_p )]T

it is desired to find an estimator for 02 and

0 = W0I, 02, • , ,,]T = [a ," , - a.,c••,C1 C ]T.

Note that

'(.YN) = P(V(N)1yN_1 (YN_ ).
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Therefore,

N
P(YN) = ItlP(y()yt_.)]P(Y(O), • , y(-p)) (I 6)

t=1

Because (e(t)) is Gaussian, P(y(t)y,_) is also Gaussian. and

P(y(t)ly_)= exp- pI( j1 (17)

where

Y(t) = E[y(t)1y_j] (18)

p2 = E [0y (t)- (t))(y (t)--)(t))] = E [e (t)e (t)] = o2

First, note that the probability density P (y (0),'" , y (p)) is a complicated function of

fy (0), • •, y (-p)), 0 and a, and therefore, it is difficult to find the maximum likelihood esti-

mate of 0 using P (yN) in (16). Instead, we maximize the conditional probability density func-

tion

N
P[yN I(y(0), ,y(-p))] = -IP(y(t)Yt_1 ). (19)

t=1

To use (19) for maximum likelihood estimation, we need to express Y(t) in (17) in terms of 0.

If we assume that we know (e(t)), then

Y(t) = E[y(t)1y_ 1

= aty(t-l) + ••+ apy(t-p) + cle(t-1) +" -• + Cqe(t-q).

However, we do not know (e(t)), so we approximate e(t) with e(t) that is computed recur-

sively by

E(t) = y(t) + aly(t-l) + + ay(t-p) - cte(t-1) .- c (t-q). (20)

With this approximation note that

y(t) - Y(t) = EQ).

From (19). the (conditional) likelihood function L is given by

-log , =(t) + Nlogo + -log2x.

Note that maximization of L with respect to the parameters a and 0 can be done separately.
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Maximization of L with respect to 0 is equivalent to minimization of

Z0 m E2(t).

2 k-1

With the following notations,

Df (0) =- [ ?L -... ,f ]TD2f(0) [~LI R XR,
0061 ae a0 Ro' j(0 fi[  R

notice that

N
DV(O) = Ze(t).D(t) - BTb,

N N
D2 V(0) = CD(t)D T F(t) + :e(t)D 2e(t) B TB,

where

[D F(1)] r  (1

[D E(2)JT c(2)
B b (21)

[De(N)IT E(N)
Using (20), one can easily verify that

a -(t) = - &(t-1) C aE(t-2) _(t-q)
a = (-')  .... c+ .a

&(t)= _E.t-0 - cI ae(t-1) C eq-2) _ _(t-)

cci - oC aci 'Cq

If we define the matrices Y and E,

y(0) y(-I) y(I-p) ](0) e(-I) E(l-q)AD1 Y (0) y (2-p ) E(1) E(0) E(2-q)
Y" E -

y(m-1) y(m-2) y(m-p) .1 (m-1) E(m-2) •(m-q)
then the matrix B in (21) has the form
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Cl
C 1

Cq "- Cq -C,

Now the parameter 0 that minimizes V(0) can be obtained iteratively by using Newton's

method.

(Conditional) Maximum Likelihood Estimate
Set initial estimate 0 = 0;
repeat

Compute e(t) with (20);
Solve B s = b;
0 := 0 + s

until convergence.

The matrices C-Y or C-1E are not Toeplitz, but they ae close-to-Toeplitz.

Example 4 Instrumental Variable Method [20].

Consider an ARMA model as in (15), and let 0, = [a,, - , ap .T The parameter Oa can

be obtained by solving

TfTTO = T2y (22)

where

y(q) y(q+l) y(q+IN) y(O) y(-I) y(-p)
y(q-1) y(q) y(q+N+1) y(l) y(0) y( 2-p)

Tr T Tl =

y(q-p+1) y(N-1) y(N-p)

y = [ y (1) y(2), ••,y(N) IT

Again the matrix T2T, is close-to-Toeplitz, and the fast algorithms in this thesis can be used to

solve (22).
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Example 5 The Euclidean algorithm and Hankel Matrix Factorization. t

The Euclidean algorithm that tests if two polynomials are relatively prime or not in fact

factorizes Hankel matrices. To see this, let us consider the 3 x 3 Hankel matrix

H= 321
2 14

We define the polynomial

p(x) = 5x 4 + 3x 3 + 2x 2 +X + 4,

whose coefficients are the Ist column and the Ist row of H. Also let

q(x) =x 5.

We repeatedly divide as follows.

I X
5

5x 4+3x3 +2x2+x+4 I tX5  (22a)

Sx5+3_ X4.+2 X3-+I X2 +4Xx +-x +- -x +-x
5 5 5 5
3 4 2 3 1 2 4-x- -- x -- x --
5 X-5 X-5 5 3

25
3

x 5 5 5 5x 4+ 3x 3+ 2 + x+4

-_I 3_I 2 20
5X 4+ OX3+!x+

3 3x +3xI -X- -LX x- +-4-

3 3 3

t The division allorilth shown here is slightly differnt from the classical Euclidean algorithm. However.
classical Euclidean algorithm can be also used for this puposeL
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9
5-

1-- 2 7x _3 + x4 2 x 3 - x2- 4 x (22b)
33x i1~~- 5  5  5 5

3 X4.3 3 51 2.36

5 5 5x- 5

-x 3 + lox2 - 8x

1

3

-x 3+10X+12& X- --x 7X.4
3 3 3
1 3 10 2 8---x - - -x

_3x 2 _ 3x+4

1

3

-3x 2 -3x+41 -x 3+10x 2-8x (22c)
_X3_ X2 3

4

Ilx2 35 x
4

Now consider the truncated divisor polynomials in (22),

po(x) a 5x 4+3X 3+2X 2, pl(X) m U.IX3+Ix2, P2(X) m -3x ,

3 3

and the highest degree terms of the dividend polynomials in (22),

qo(x) • x3, ql(x) 3 -- x" q2(X) a
5

If we multiply pi(x) by the coefficients of qi(x), then it turns out the resulting polynomials

form the columns of Cholesky factors of H. Namely,

H = 3 1/5 ] 5 15 5.
2 -115 31 1/33

The computational effort is O(n 2 ). Further discussion of the pmblem will be given in Chapter

4.
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Example 6 Polynomial Interpolation [15, pp. 38-46].

Given n distinct points x1, x2, ", , xn, we can find a polynomial

p (x) = a.x - + a,,_-2x - + •• + a ix + ao (23)

of degree at most n -I by solving

X, X 1  [ao] Y1
1 X2 A2x-1|  a, Y2

S  I = I Yi rp(xi).

1 X. Xft- I a.-, Y4j

Instead of finding the coefficients of the polynomial in (23), we could as well find the

coefficients of the so-called Newton form,

p(x) = CO + cI(x-xo) + c 2(x-xo)(x-xI) + + C.(X-XO) (X-X,_O.

One can check that the coefficient ck depends only on the values of f (x) at the points

xo, xI, - •, xk; it is called the kth divided difference of f(x) at the points x0, x I, xk and is

denoted by f [xo, • , xk 1. Also one can check that

f [Xo, X = fx 1 , Xk]f XO, (24)
Xk - Xo

After finding the Newton form, we can recursively compute the coefficients ai in (23), if we

wish, by using the identity

CO + c(x-xO) + c2(x-xo)(x-xt) + c3(x-xo)(x-xIXx-x2)

= co + (CI + (c2 + c3(x-x 2)Xx-xi))(x-xo). (25)
The computations in (24) and (25) need 0(n 2) operations, and in fact factorize the Vander-

monde system of equations [8]. The factorization algorithms (for Vandermonde matrices) in

Chapter 4 are closely related to this method.

3. Outline of the Thesis.

The idea in Sec I is extended in Chapter 2 to find triangular factorizations and QR fac-

torizations of block-Toeplitz and Toeplitz-block matrices. In Chapter 3, we slightly change the
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pre-array in Sec I to constructively obtain certain well-known Toeplitz inverse expressions

called the Gohberg-Semencul formulas. We also generalize the Gohberg-Semencul formulas

[22-23] to a large class of matrices. Some related results are in [21], [261, [391, [42-43], [63].

In Chapter 4, we show how to factorize close-to-Hankel matrices such as Hankel, block-

Hankel, Hankel-block and Vandermonde matrices. Some previous results are [51, [9]. [41],

[481, [53-541, [611. In Chapter 5, we present a divide-and-conquer approaches for finding

solutions of block-Toeplitz and Toeplitz-block matrices; for related results, see [2]. [101, [161,

[491, [51]. Some concluding remarks are offered in Chapter 6. Each chapter is self-contained,

and therefore, readers can essentially read them in any order.
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Chapter 2.

Generalized Displacement Structure for Block-Toeplitz,
Toeplitz-block, and Toeplitz-derived Matrices

Abstract

The concept of displacement structure has been used to solve several problems connected

with Toeplitz matrices and with matrices obtained in some way from Toeplitz matrices (e.g. by

combinations of multiplication, inversion and factorization). Matrices of the latter type will be

called Toeplitz-derived (or Toeplitz-like). In this chapter we shall introduce a generalized

definition of displacement for block-Toeplitz and Toeplitz-block matrices. It will turn out that

Toeplitz-derived matrices arm perhaps best regarded as particular Schur complements obtained

from suitably defined block matrices. The displacement structure will be used to obtain a gen-

eralized Schur algorithm for the fast triangular and orthogonal factorizations of all such

matrices, and well structured fast solutions of the corresponding exact and overdetermined sys-

tems of linear equations.
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1. Introduction.

In multichannel signal processing, system identification and image processing applica-

tions, one encounters various forms of structured matrices. One interesting family consists of

matrices having a block-Toeplitz form

80 B-.1  B.#+l
BI B0  B -+2

A I =  . B: rectangular matrices, (la)
SBM-1 DM-2 •B-N+M

or a Toeplitz-block form

T,1 T1,2 • T1,N
T2,1 T2,2 "T2,N

A 2 = J, T j: rectangular Toeplitz matrices (lb)

rT. I TM.2 TMV

or often as Schur complements with respect to various entries in A I or A 2 (see the examples in

Sec 4). Often we call the matrix A I an M x N block-Toeplitz array, and the matrix A 2 an

M x N Toeplitz-block array; the matrices obtained as Schur complements are often not Toe-

plitz at all, but have been called near-Toeplitz, or close-to-Toeplitz, or Toeplitz-like or

Toeplitz-denved matrices.

For such A, we shall show how to obtain fast triangular factorization A = LU, and fast

QR factorization, A = QR, which among other things will also give us fast nicely structured

methods for solving exactly-determined systems of equations,

A x=b, A e R"', A is strongly nonsingular (2)

and also over-determined systems of equations,

A x = b, A e R 'x, m > n, A has full column rank. (3)

Our results will be based on a generalization of the concept of displacement structure used in

earlier work (see e.g., [13-17]). Besides enabling us to solve several new problems, this gen-

eralized concept will also provide a new and simpler approach to many of the problems studied
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in [13-17] and [4]. However, first we briefly review earlier approaches and results.

For a square block-Toeplitz matrix A I r R", with square blocks Bi r RT", there exist

several fast triangular factorization algorithms such as the Bareiss algorithm [1], the multichan-

nel Levinson algorithm [181 and the Schur algorithm [13-141, [20), all of which require matrix

(of the block size, r x r) operations. Our approach will treat block-Toeplitz matrices in essen-

tially the same way as scalar Toeplitz matrices, and in particular will use only elementary

scalar operations; the absence of matrix operations such as inversion will simplify the design of

dedicated hardware implementations. For a square Toeplitz-block matrix A2 e ReXI with

Ti~j c- R' % , the previous approaches were first to transform A 2 into a block-Toeplitz matrix

by pre- and post-multiplication with permutation matrices, and then apply an algorithm for

square block-Toeplitz matrix to get a row- and column- permuted triangular factorization of

A 2 ; there is clearly a difficulty with this approach when mi*nj. Also the permuted matrix

might not be strongly nonsingular. Our approach will not have this problem because it directly

factorizes A 2 without permutations. Finally, for matrices obtained via Schur complementation,

the concept of displacement structure (see e.g. [4], [14-171) has been used to obtain a number

of fast algorithms; in particular, several algorithms have recently appeared 121, [41, [81, [211 for

the orthogonalization of scalar Toeplitz matrices; our new approach also provides a generalized

unification of these algorithms.

Several illustrations and applications of our approach will be given in Sec 4. Our choice

here was made in part to relate to examples and problems that are studied, generally in

different-ways, in other chapters of this thesis.

Our generalized definition of displacement structure is presented in Sec 2. A correspond-

ingly generalized Schur algorithm for matrix factorization is derived in Sec 3. As just men-

tioned, Sec 4 contains various applications. Finally some computational aspects are elaborated

in Sec 5; In particular we may note the introduction of spinors, which include as special cases
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the circular (Givens) and hyperbolic rotations as well as the well-known elementary (or elimi-

nation) matrices.

2. Displacement of Matrices.

Let A e R"X be a given matrix, and let Ff and Fb be strictly lower triangular

matrices. The matrix

V(FIF.A =-A -FfAFbT (4)

will be called the displacement of A with respect to the displacement operators {Ff, Fb }.

Assume that

rankV(Ff P&)A = a.

Any matrix pair {X, Y I such that

V(Ff.Fb)A = XyT,  X---[ x,' X2. . .a, Y=[ IYl-Y2,.. Y,]

will be called a generator of A (with respect to (F, F6). The number a will be called the

length of the generator (with respect to (Ff, F b )). A generator of A with the minimal possi-

ble length will be called a minimal generator. The length of the minimal generator of A (i.e.,

rank(V(Ff,/b)A)) will be called the displacement rank of A (with respect to (Ff, Fb )), and

denoted as a(F./ )(A ).

If (X, Y I is a generator of A e R " with respect to (F', Fb)), then for any nonsingu-

lar matrix S e Rmxa, the matrix pair (XS, YS-T} is also a generator of A because

V(Ff.Fb )A = XyT = XSS-yT. (5)

Let (X, Y) be a generator of a matrix with respect to strictly lower triangular displace-

ment operators (F', F b ). We say that a generator is proper (with respect to the column j) if,

for a certain 1. all the elements in the i th row of X and above, except for the element [X ]i j,

are zero, and all elements in the ith row of Y and above, except the element [Ylij, are zero;

for example,
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0.0*0 0 0.0*0.0]
X= * * * * * Y= * * * * .

* *****

Often we shall denote a proper generator as (Xp, Yp). If {X, Y }is not proper, then by choos-

ing appropriate S, we can obtain a proper generator (XS, YS-T I under certain conditions on

the matrix A (see Sec 5).

Note that the displacement of a symmetric matrix A can be written as V(p/F,)A = XIXT

where Z is a diagonal matrix with I or -1 along the main diagonal; we shall say that A has a

symmetric generator, {X, X F..

As an example, for a square Toeplitz matrix T = (ti-j) r R '

V(Z.,z)T = . = X EX r  X = Ilt /2 , z, 1 _

Choice of Displacement Operators.

Let (X, Y I be a generator of length oa of A with respect to F1 and Fb . If the matrix-

vector multiplications Ffv and Fbv takes f(n) operations, then our algorithm in Sec 3 will

need 0 (anf (n)) operations. Therefore, our objective is to choose the "simplest" or sparse (to

make f (n) small) strictly lower triangular matrices F1 and Fb that also make a as small as

possible. For a scalar n x n Toeplitz matrix, a natural choice of displacement operator is the

simple n x n shift matrix, Z,, with I's along the first sub-diagonal, and 0's elsewhere.

For an M x N block-Toeplitz array with r x s blocks, the following choice of displace-

ment operators gives the smallest a,

F 1 =ZM, Fb=Z,



- 30-

where Z4. is a block shift matrix, i.e., a k x k array with r x r identity matrices on the 1st

block subdiagonal and zeros elsewhere.

For block-Toeplitz or Toeplitz-block matrices, it is straight forward to obtain generators

from the displacements by inspection (see Appendix 4 for closed forms), as we shall illustrate

in several examples.

Example 2.1. For the following block Toeplitz matrix A, called the "Hurwitz matrW, we can

choose F1 = Z2 and Fb = Z to get a rank-2 displacement V(Ff Fb)A

a, a3 a5 a7  a, a3 a5 a7

aO a 2 a 4 a6  a 0 a 2 a 4 a 6

A = 0 a, a3 a5 • V(Ff.F)A =

0 ao a2 a4  0
Note that V(F/,b)4 = XYT, where

[ 1 0 o. ]T [a, a3 as .]
0 10 -ao a2 a4 *

For an M x N Toeplitz-block array with mi x nj Toeplitz matrices, we shall use the dis-

placement operators,

M N
FI=Z,.e Rmx, Fb = IZ e RnA,

where 0 denotes the concatenated direct sum, i.e., A dB =

Example 2.2 For the following Toeplitz-block matrix A, which arises in ARMA system

identification problems [91, we can choose Ff = Z 4 and Fb = Z20Z 3 to obtain a rank-3 dis-

placement,
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Po 0-1 Yo "1- T-2 0 P-1 YO 1-I Y-2

A - N PI Y2 121 Yo ' (F-)A y4 P2 Y2

% N Y3 72 1 P3 Y3

Example 2.3. Consider the matrix M,

I A 0O.

M= AT o ].
0 1 0

If A is an M x N block-Toeplitz array with r x s blocks, we could choose

Ff = Fb" = Zk, 0 ZN, 0Z,.

If A is a Toeplitz-block array, for example, A - T, , where T e R m'Km and T2 r RE m

then we could choose

F1 = Fb = z,,,z,,Oz. OZ..

Remark 2.1. One might check that the displacement operators for a block-Toeplitz matrix and

a Toeplitz-block matrix are related by

F

Z; = P [RZk ]P,

where P is the permutation matrix that transforms the block-Toeplitz matrix into the Toeplitz-

block matrix by pre and post-multiplication, vice versa.

3. Generalized Schur Algorithm and Partial Triangularization.

A fundamental method for triangular matrix factorization is the so-called Schur reduction

process, which computes Schur complements of leading submatrices iteratively. Lev-Ari and

Kailath [16-171 realized that the classical Schur algorithm mounts to Schur reduction, and

gave several important generalizations including one for Hankel matrices. In the rest of this

chapter, we shall further elaborate the ideas in [17).
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Fast Schur Reduction using Displacement Structure.

Our fast algorithms will be based on the following theorem.

Theorem 3.1 Let (X('), y(l)) be a generator of a rectangular matrix A (I) r RM" with respect

to (Ff , Fb ). Also assume that [X(' ), y(t)} is proper with respect to a particular (pivoting)

column, which we shall index as "pvt". If we denote the columns of X ) and y) by

X0=[fI , 42(W)'. ,M x YI, y() = [yfl) . . (1)

then the matrix A ( ) defined by

has null first column and row, and has a generator {X(2 ), Y(2)), with respect to (Ff, FbI of

the form

XC2) = [xf.., Ffx, .., xj Y() = [y.l), , Fby, . .,

Proof

A (2) - Ff A (2)FbT - [ ( xp(y T] - Ff [A (1) - xp(wyp(T]FbT

= A (1) _ Ff A(I)FbT - %I(,)T + Fx,(.)y., )TF bT

= X(IYMlT - xW('yW('T + Fxw'y, 'TFbT
= X(2)y(2) T

The first column and row of A(2) are null because

A()e, = [X2)Y(2)T]e, = 0, eTA( ) = erI[X (2)Y(2)T I = 0,

where we have used the facts that Ff and Fb are strictly lower triangular and (X0 ! ) , y(l)} is

proper. 0

Before presenting the generalized Schur algorithm, we assume that we have a procedure

called MakeProper that can convert a given generator (X, Y) of A e R'"' into a proper gen-

erator (Xp, YP ) (whenever A has a proper generator); this can be done with 0 (um) operations

as will be shown in Sec 5.

By applying the previous theorem using such a proper generator we can obtain a (possi-
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bly non-proper) generator of A(2). By repeating this process, r times, we shall generate the

matrices

A(r+l) = A() - x(y

A(M) = AM -')-

At)= A 0 )~ - ~ ) (~

It turns out that this process gives a parial triangular factorization of A0; this follows by

noting that

0) -x(i) ()T + A(F+l)

i(I

- P11) xgIU + A(P"", A(r).

Remark 3.1. If we defin A'= B~ D] then it iseasy to check that S(1+1) = E - CB'1D.

The matrix S(r+') is called the Schur complent of B in A ). Notice that the above process

also gives a generator of S( ,+' ).

Remark 3.2. The above r step partial triangularization breaks down if and only if there is a

singular leading principal submatrix of order less than or equal to r; we shall assume that this

is not so.

The above procedure can be summarized in the following algorithm, which we shall call

a generalized Schur algorithm.

Algorithm (Generalized Schur Algorithm)

Input: A generator (X, Y) of A e R -  with respect to (Ff, Fb}.

Output: (i)Partial triangular factor L e R-x " and U e R'" ofA.

i 
..
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(ii) A generator {X, Y) of the Schur complement of the r x r leading principal subma-

trix of A,

Procedure GeneralizedSchur
begin

fork := to r do begin
MakeProper,
The k th column of L := xpw; The kth row of U := y ;
Replace x., with F t xp,; Replace y., with Fbyp";

end
return (L, U, {X, Y});

end.

Note that the above procedure needs O (amr) operations, where a is the length of the

given generator, assuming that MakeProper takes 0 (n) operations (see Sec 5).

Example 3.1 Triangularization of block-Toeplitz or Toeplitz-block matrices.

As trivial examples we can triangularize block-Toeplitz matrices or Toeplitz-block

matrices simply by completing the above generalized Schur algorithm. Note that the multipli-

cations li Y, and Fb y,,, amount to shifting down "segments" of xpw and yp,.

Example 3.2 Simultaneous Factorization of a Toeplitz matrix and its Inverse [4].

Consider the matrix

A = [ , T=(tj) e R " , t 0 =l (6)

which has the following symmetric generator,

X = [I t' t, 1 0 - £'Z= 1 0

After performing n steps of partial triangular facorization using the generalized Schur algo-

rithm, we shall have

AN on L [ LrUT rI+ [h0 nS (7)

,,Now, one can check by coniparing the e ,Ii of A he (6) and (7), d
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T = LLT, T-1 = UUT.

Remark 3.3 Recall that the classical Schur algorithm 1201 gives only the factorization.

T =LLT, whereas the Levinson algorithm gives the factorization, T-1 = UUT. If one only

needs the factorization of T-1 the above method is slower than the Levinson algorithm [18]; a

derivation of the Levinson algorithm from the generalized Schur algorithm can be found in

Appendix 3.

Example 3.3 Orthogonalization of a fully windowed Toeplitz matrix.

Let T = (ti-j) e R'", m > n be a fully windowed Toeplitz matrix, i.e.,

ti_) =0, ifj >i, or i >m-n+j.

Then it is easy to check that C w TT is also an (wnwindowed) Toeplitz matrix. Now consider

the following matrix

A=[T 0], (8)

for which it can be checked that a generator of A is

X Co c • c, ..-1  to tI t , , 0 E R1 0

After performing n steps of partial triangular factorization using the generalized Schur algo-

rithm, we shall have

R J [R, QT I+ O $• 
(9)

From (9), one can easily see that

TTT= RTR, TfQR
So tha Q. is orthogonal because R T LT OR R RT R .

Remark 3.4 Recall that the (fixed AR) lattice filter operates on a (data) sequence (t, and per-

forms orthogonalizatlon to get the prediction erors without a knowledge of the covariance
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matrix (i.e., TTT) of the data sequence. The lattice filter is again a Levinson-like version of

the above method.

4. Applications to non-Toeplitz matrices.

Now we shall consider various extended matrices M. By applying the generalized Schur

algorithm in Sec 3 to judiciously chosen extended matrices, we can obtain interesting results

including QR factorizations of block-Toeplitz or Toeplitz-block matrices.

Generators of extended matrices in this section can be also easily found by inspection.

For closed forms of various generators, see Appendix 4.

A. QR factorization.

Let A e R" be a block-Toeplitz or a Toeplitz-block matrix, and let us define the block

matrix,

-[ A O

ME A T  A A T  (10)
0 A I

If we apply the generalized Schur algorithm to (10) then after the mth step we shall have a

generator f of

[ATA AT
A I (1

After another n-steps of partial triangularization, we shall have

ATA AT] [RT] 0 0. (12)

Now, one can check that the matrices Q and R in (13) satisfy

A =QR, QTQ =1,

i.e., we obtained the QR factorization of A. This procedure will need O (An) flops.

t One can start with a gamrawr of the extended marix (I1), I in Example 33. A closed-fom expes-
sion for a gnermgor of (I1) for block-Toepltz and Toeplisz-block mau A can be found in Appendix.
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If one wish to compute R-1 directly, then one can perform the (m+n) steps of partial tri-

angularization with the matrix,

M=[ATO .
0 10

Note that

[A TA I ] J. Rf UT L o]0 1

and therefore, U = R - I because UR = 1.

B. Removing Forward Elimination in Square Systems.

If one's primary interest in the factorization is in solving a square system of equations,

Ax = b, (13)

then one might want to obtain the transformed right-side vector y a L-b, during the course of

the factorization process. This can be done by performing the following partial triangular fac-

torization of the matrix M,

M A Ib = [y T

whence the solution to (13) can be obtained by solving the triangular system of equations,

LTx = y. (14)

C. Removing Back-Substitution in Square Systems.

From a hardware implementation point of view, the back-substitution step in (14) can still

be quite cumbersome [6). This back-substitution process can also be eliminated by performing

the partial factorization of the matrix,

t t e= 0t
Notice that the solution x = A-lb is the Schur complement of A in M. Mmmrfore. after n steps
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of partial triangularization, we shall have a generator of the solution, from which we can read

out the solution; see [61 for details.

D. Solving Least Squares Problems without Back-substitution.

To solve the weighted least squares problem of minimizing

IA2(AIx - b)112,

where A 1 and A 2 are block-Toeplitz or Toeplitz-block matrices, we form the matrix

-A2 A 1

M=[AT 0 .

Now notice that the least squares solution,

x = (AIA 2 'A)-'A Tb (15)

is the Schur complement of the submatrix

S-A2 A,]

Therefore, after m +n steps of the generalized Schur algorithm, we shall have a generator of

the solution (15), from which the solution can be read out [6].

E. Regularization.

If the given Toeplitz least squares system is particularly ill-conditioned, it is meaningless

to compute the exact (least squares) solution, since small perturbations of the matrix can cause

very large perturbations in the solution. In such cases, we may solve the following regularized

system [10], (191

by partial tiPangularization of the matrix
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01M = A b

T11M= A T 111 0

After m+2n steps of the generalized Schur algorithm, we shall have the solution. We may

remark that this technique of regularization is known as the leakage method (adding white

noise with variance il 2 to the data sample) in the signal processing literature (see e.g. [3]).

5. Construction of Proper Generators.

We shall present a method for constructing a proper generator using spinors; for a

method using Householder matrices, see Appendix. A spinor Svjli) r R"' is defined as the

identity matrix except for the following 4 entries,

[S(jli)]ij= c, [S(Ii)]ij = s2, [S(ij)lji =-s 1 , [$(il)]jj = c,

where [A ]ij denotes the (i, j)th element of the matrix A, and c2 + s is2 = 1. The parameters

(c, s 1 , s 2) will be called Schur parameters. Notice that the inverse of a spinor is also a spi-

nor, viz., S(jjt) is the identity matrix except for the following 4 entries,

[s(-i)], = c, [S-h),jj =-s2, [s,-ilJi s = s, [s jj= c.
Let xT E R""x and yT E R1" be row vectors. Let c, s, and S2 be chosen as

Ixyi xi -cY
C = [7' S2 =-C ' -, s=-c.-,

xy + Xjyj xi Yi

and define x' and y' by

,,,r ,Tsoili), yT yTS6.

Then it is easy to check that x' = yj' = 0, and ey 1 = xTy. We shall call the elements xi and

y8 pivoting elements. Therefore, by repeating this process we can annihilate all elements of x

and y except the pivoting elements, resulting in

£ Ut

. 0*, uli), [0,.OYi, 0..0] =y T  ).

jlijo
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An arbitrary choice of pivoting element or an arbitrary ordering of annihilation, might

result in [I + I yj < 0, for which real spinors do not exist. The following function returns an
xiYi

index "pvt", and two sets of indices, FIRST and NEXT; if we annihilate the elements in xT

and yT whose indices are given in the set FIRST, pivoting with the element xp, and yp,,

before the annihilation of the elements given in the set NEXT, then it is not hard to see that

[1+ xjyj ]<0.

XPI Yp~q

Procedure FindOrdering
begin

Compute y, = xjyj for all 1 S i S ct

Pset := { i I yi > 0 ); Nset =i I 'y <0 j;Zset [ i Iy =0 ;
if s > 0 then

pvt := any i e Pset;
FIRST:= Pset; NEXT:= Nset;

else if s < 0 then
pvt := any i c Nset;
FIRST:= Nset; NEXT:= Pset;

else /* Cannot rotate *
return (s);

Add Zset either to FIRST or NEXT;
return (pvt, FIRST. NEXT)

end

With FindOrdering, we can summarize the procedure for constructing proper generators.

Procedure MakeProper
beginT

X := first non-zero row of X; yT := first non-zero row of Y;
FindOrdering;
If s 0 then

return ("A has a singular minor");
for each j E FIRST, and then for each j E NEXT

Determine S ol,,) to annihilate x. and yj;X := XS0! p); Y :=YSi,,

end;
return ((X, Y))

end;



-41 -

Remark 5.1 The quantity s = Zyi that is used to find the annihilation ordering is the product

of the diagonal elements lkUk of the partial triangular matrices L and U obtained by the

generalized Schur algorithm. Therefore, s > 0 for positive- definite symmetric matrices, and

s < 0 for negative-definite symmetric matrices. Hence, for these mamces we can choose a sin-

gle column as a pivoting column throughout the triangularization process.

Some Special Cases.

If we are given a symmetric generator of a symmetric matrix A, i.e., if Y = XT,, then the

updating of Y in the above procedure is redundant, because the updated {X', Y') after annihi-

lating a row is still symmetric. To see this, let

xT = yT = [xpW, yj 1.

Then the spinor that annihilates xj will reduce to a Givens rotation,

G(jp) - C- c 2 + s2 - 1

On the other hand, if

uT = [upW, uj I, vT = [UP., - Ujl

the spinor will become a hyperbolic rotation,

[ch -sh 1 hh2
H ( IPW) -sh ch . ¢h2 -sh 2 - l

Notice that Givens and hyperbolic rotations preserve the symmetry of the updated generator,

i.e.,

YS- = Y' =X', X' = XS, S: a Givens or hyperbolic rotation.

As another special case of spinors, consider the two row vectors

uT = [up., -uj , Yr = [VP.,, 01.

For this case, the spinor that annihilates uj will reduce to the usual eliminatdon matrix,

1) I , 1B . (16)

Upw
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Example 5.1 The celebrated "Routh procedure" [111 for stability testing is just a triangulari-

zation using our generalized Schur algorithm of the Hurwitz matrix of Example 2.1.

Example 5.2 Consider the following Toeplitz-block matrix called the "Sylvester matrix" [ 11 ,

a0  bo

a, ao b, bo

.a, . b,

S= a. . ao b,. . . e R(' ) ( )  (17)

a. a, b,. b,

a. b.m

A nonsingular Sylvester matrix is always strongly nonsingular, and therefore, we can check

whether a Sylvester matrix is singular or not by using the generalized Schur algorithm. The

matrix S in (17) has a generator, with respect to (Z,,,+, Zm (Z,}

=ao  a,, .00 Y=[o (18)X= b bl . -b. 0-0= 0 •0 1 0 •0 (8

When we apply the reduction technique to X and Y in (18), the spinors during the first n steps

will be just the elimination matrices of (16).

Remark 5.2 For the triangular factorizadon of a block-Toeplitz matrix, one may use the

block-spinor,

S -KI U-1 [- ]T K2 L U= I + +4k]

to annihilate X1.2, pivoting with X ,, by choosing K = XjjXZ,1 . However, the use of matrix

inversion in the block rotation makes the control flow in most hardware implementations com-

plicated, and therefore, the use of block rotations is often discouraged; our recommendation is

to use the generalized Schur algorithm, which only operates on selected columns of scalar.
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6. Concluding Remarks.

We have shown how to obtain triangular factorization and QR factorization of Toeplitz-

block or block-Toeplitz matrices in 0 (inn) flops. Our method is based on the displacement

structure properties of matrices. We also presented some other applications of our algorithm.

We have generalized earlier definitions (see e.g. [14-17]) of the displacement for

Toeplitz-like matrices and presented a correspondingly generalized Schur algorithm for their

factorization. The extended definition allows us to handle block-Toeplitz and Toeplitz-block

matrices and Schur complements with respect to the leading (block) entries of such matrices.

Composite matrices obtained as products and inverses of Toeplitz matrices can be nicely han-

dled by formulating them as Schur complements of entries in a suitably defined block-Toeplitz

matrix. Some interesting examples were given in Sec 4; Several of them will be considered in

other ways in other chapters in this thesis.

We also mention that displacement structure can also be introduced for Hankel and

Hankel-like matrices (see e.g. [17]) and also Vandermonde-like matrices; analogs of the (gen-

eralized) definitions, algorithms and applications in this chapter have also been obtained for

these matrices (see Chapter 4 or (5]).

APPENDIX 1.

Finding Generators of Matrices.

Once we have the displacement of a matrix, we can obtain a generator of the matrix by

representing each pair of non-zero columns and rows that crosses at the main diagonal as a

sum of two rank-one matrices. As an example, the displacement VVIR.) in (10) can

represented as follows;
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(CFf.F") = 2I + eC1 0, 013_, U Y,-1, 7-2 + Y2 T

where e, denotes the vector with I at the ith position and O's elsewhere.

In general, the following procedure can be used to find a generator from the given dis-

placement with 0 (inn) flops.

Algorithm (Finding a generator)

Input: The displacement V(FfybA
Output: A generator {X, Y) of A

Procedure FindGenerator
X := *; Y := *;
while there is non-zero column or row

for each pair of a column u and a row vT that crosses in the i th position of the main
diagonal of V(F,,hb)A begin

if ui * 0 then begin
U = u/ujlf2; U = u except 9i =0-
V := v/ui V:= v except Vi =0;

end
else begin

U = u except 4i = 1/2; II := u except U = -1/2;
V v except Vi = 1/2; V := v except 7 = -1/2;

end;
X := [X, a, U]; Y := (Y, v, -V];
Remove u and v;

end;

for each an unpaired ith column u begin
X := [X, uJ; Y := [Y, e8j;
Remove u and v;

end

for each an unpaired jth row vT begin
X := [X, eJ; Y := [Y, v];
Remove u and v-

end
return {X, Y)

end
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APPENDIX 2.

Construction of a Proper Generatoi- using Householder matrices.

The matrix E of the form,

E =lI- 2uv , u v--1I

will be called a Householder mari. If u = v, then the matrix E reduces to the usual (orthog-

onal) Householder matrix. One can check that E has self-inverse, i.e.,

E =E - l .

Let x r RMX', y e RX' and x' e R" x , y' e R" are given vectors that satisfy

x Ty = x'ry, xTy = xITy.

For such vectors, we shall show how to find E such that

xT= xTE, yrT9ET. (A2.1)
To to this, first notice that (A2.1) can be re-written as

XT xT - 21lvT, yT = yT - 2p2uT, 31 Wx u, 32 a yTv

so that

v = [x - x']/2 1 , u = [y - y']/202 (A2.2)

Therefore,

yTv = 2 = yT[x - /2p1, xTu = p2 = xT[y - y']2p2

Hence, the Householder matrix E where u and v, and therefore Pr, and 02 are chosen such that

2132 = yT(x _x l = xT[y _ y]

will satisfy (A2.2).

Let {X, Y) be a non-proper generator, and let xr and yT denote the top-most non-zero

rows of X and Y. To make {X, Y I be proper, we choose a pivoting column, and post- multi-

ply X and Y with E and E , respectively, so that

xT=x = [O,.., o , ' o,.. o]T yr=yET=[O,..,O,,,,. of.
We summarize this procedure below.
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Procedure MakeProper
begin

XT = first non-zero row of X; yT := first non-zero row of Y;
s := xTy;
if s a 0 then

return ("Matrix has a singular minor");
Choose an appropriate column as pivoting column;x Li, := .xIyp] 11 ,  _y ':=x'y/ ;

, =1; := [x - XJ']Ty/2;
u :=[y - y']/2p2; v := [x - x']/2;

X :=X - 2XuvT; Y := Y - 2YvuT;
return ([X, Y));

end.

APPENDIX 3.

1. Derivation of Levinson Algorithm from generalized Schur Algorithm

Let X(k) be the generator obtained after the kth step (k : n) of partial triangularization,

starting with the generator X(l;

X(k) 0 • 0 kk 'k+'. 1 An u uk 0 . (A3.1)

If we can obtain lt and wk+1j, from uj's in (A3.1), then we can compute the Schur parame-

ters for the next hyperbolic rotation, and apply the rotation only to the bottom part of (A3.1);

Ut 1A ukk 0 0

First notice that

k k h
I = (chj2 

- sh-2) a = I(I - k,2)1/2, k, U (A3.2)
i-1 i-1 h

Also it is easy to check that

1 12.2 13,3 ln-l -I 3.3
I I t,._1  I u22 u ,  W2.1 0 0 0 0

tj 1 t'-2 0 U -2 W31 w 3,2  0

2 1j W 4 3

to-1 t -2 1 0 0 u
Wa. Wa1 2 WW. 3 W.5.- 0
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Hence

utjk
Uk-A~

'wOk+1 (tko 4- 1 l • (A3.3)

UI.h

and therefore, kk = Wk+Ak/lk,, can be computed by (A3.2) and (A3.3) yielding the Levinson

algorithm.

2. Derivation of Lattice filtering Algorithm from generalized Schur Algorithm.

Let X(k) be the generator obtained after the kth step (k < n) of partial triangularizaion,

starting with the generator X(1);

(k ) O 1[O  lkA + . 1 . b l t b . + k - 0 0 T

1 0 0 Wk+1,k W f jk f.--,+-i 0 0

where

[b= f., f.]= to, i, t, ]

Again it is easy to see that

fi.i fla . . . f
to ti tji_ 0

O t o t, iI..

0 N fm-M.1
to tj 0 -

0 0 0 to ta-..

0 0 . .fMA

1 12.2 13.3 I-.m-I I...'

W2.1 0 0 - 0 0

w3.1 w 3.2  0

SW 4 .3 j. (A3.4)

0

Wn.3 wn.2 w .3  W,.,_ t  0

Using (A3.4) and the fact that TTQ -RT, one can show that
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the ith diagonal element of QTS -- k.

Therefore, we have an alternative way of computing the reflection coefficients,

fTbk 
Tkk - bb' bk = [bl, ,". b._.,,l-AT k, k= V1.,,',f- +-t.IT.

APPENDIX 4.

We shall give generators of some of important matrices explicitly. By using these gen-

erators, one would not need to use the procedure FindGenerator in Appendix I, and for those

matrices the operation count will reduce significantly.

Lemma A4-1 Generator for block Toeplitz matrices.

For the matrix A I in (a), a generator [X, Y} of A I with respect to (Zk,. Zk,) is given

by

X = 1, BIBO' BM-IBo' 
B- B-N+

Xfi0 BiBO 1  BM_,B 'J 0 -B- =BN

Proof. By applying one step of (block) Gaussian elimination, we have

A - ZAZN, = xlyT - K,

where K = xf1)yf1)' is the Schur complement of A 0. 0

Lemma A4-2 Generator for Toeplltz block matrices.

Let A 2 e R "A be an M xN array of Toeplitz matrices, Tij e R""''. where

M N
Im = - Yn -n. Let a8,j denote the first column of T8j and b14 denote the first row of Tj j.

with the first element equals to zero. Then a generator of A2. (X, Y) with respect to

M N
{0ZN, ZA,) is given by
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a1,1 a1,2  aiV4 el el b. 1 b2.1 bMI

a2, a2.2 a2jv el" el b1 2 b2 b,2
...... , Y--

aMtaf,2Ma MV• el el bI.N b2N bN

Proof. The matrix A - FIAFT has non-zero elements only on the 1st row andI 1st columns of

each block Among other possibilities, if one assigns vertical strips to xi and the rest horizon-

tal strips to y, then the above generator results. 0

Lemma A4-3 Generator for orthogonalization of block Toeplitz matrices.

If AI is an M x N Toeplitz array of square matrices Bi e R " as in (]a), then a gen-

erator (X, XZ) of M t AI ,T with respect to F -ZaZ4, where = 12, -12,,,

is given by X where

BtS 0 [0S 0 ][ BS I BS O

T AT ['j BM4 BIS 0 BIS 0

LBasJ -.N+t LS _sJ BM.+I j BM_IS 0 BM_1S 0
M-I

where S - [(Y, BiTBij 2 .
i-o

Proof. This is a straight-forward extensions of Lemma 2 in [4]. 0

Lemma A4-4 Generator for Orthogonalization of Toeplitz-block Row

Let A = [ T1, T2 , . , TN 1, where T" E R7' J are Toeplitz. Let a, be the first colwnn of

Tj, BJ be the first row of T with the first elemem equak 0 zero, and c. be th last row of ?)

shifted right by one position, a generator (X, XE) of A I] *it respect to

N
F M [jzIz,.. where E -1, 4D -4m,v. is given by
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WI W2  WNV WN+I UII U2  UN WZV 2 'X=a,/l II a laII a2•1 avillav il el at/Ilalll a2IIla2II • aN1I~aN)1  o0

where

wi = A (ilrilalwN+ t = [bl, brz., bNT ]r

ui = wC ,i,.., CR

and A(') is the matrix obtained after setting the first columns of all blocks up to the i th block

by null vectors.

Proof. Notice that the Ist row of A T A -FATAFT is ATA, the nlth row is A2A( ), and the

(nI + n2)th row is A A (2) and so on. Therefore, to each of above rows, pre-multiply

corresponding columns crossing on the diagonal to get rank-one matrices, and apply Cholesky

factorization to each rank-one matrix. The first Cholesky factors are wi , 1 S i : N. and the

Schur complements are wi , N+2 : i < 2N+1. The rest part of the matrix ATA -FATAFT is

rank-one, WN+IW2N+2.

For V, notice that K7N+ 2 (wi, F) - K N+2(wN+i+, F) has nonzero elements IIAi II on the

diagonal of the Ti block. Therefore,

Kv+2(Vi, Z.)T +2(w, F) + K2N+2(vN+Jl, Z4)KTv+2 (W ,j,1, F)

forms the lower-triangular part of the Tj block. K2N,2(vN+,, Z.)K +2 (wN+I, F) forms the

rest upper triangular parts of all blocks. 01

Lemm A4-5 Generator for Orthogonalization of stacked Matrices.

Let A [ ArT. AT,. ,AT ]. where Ai e R ' . Let (Xi. Xj;), be a generator of

M(') with respect to F =F 2 0F,., where M()= ATi AT] Then the maoix

[ATA AT
M has a generaor (X, X), w respect to F = F201 ,I where[-]I

X V WmIX...X 1 . V -YIO@ YN.
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Proof Because A T A = JATAi , we have

ATA _ F2ATAF - A[TA, - F2ATAF = WWT.

Also

A I -F.'A IFT

A - FAF T= -VWT'

AM - F,,AmF[

Lemma A4-6 Generator for Orthogonalization of Toeplitz block Matrices.

Let A be an MxN array of Toeplitz matrices T,, -r eR. Then the matrix

A ] has a generator {X, XX} with respect to F, = ZJZe 2e' OZ., and

F2 = Z*,OZ.20 " " 0 Z. , where

Xf[WT,VT]T, W=[WI,...,WM], VfVteV 2 '-' eVN,

ATAa - F2ATAjFTWj=w ,W. A - Z1 AiF -VW

Ai = [ rT.j, Ti,2.... Tijv ].

Proof. Immediate from Lemma A4-4 and A4-5. 0
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Chapter 3.

Generalization of Gohberg-Semencul Formulas

Abstract

Gohberg and Semencul gave some elegant formulas for the inverse of a Toeplitz matrix

as a difference of products of lower and upper- triangular Toeplitz matrices. Thenm are several

algebraic and analytic proof of these formulas. Here we give a "constructive" proof for the

Gohberg-Semencul formulas, under the assumption that the matrices are strongly non-singular.

i.e., all leading minors are nonzero. This assumption is stronger than necessary, but it enables

fast 0 (W) constructions for the enties in the Gohberg-Semencul formulas. Our method also

gives a natural generalization of the formula to matrices with displacement structure.



- 55 -

1. Introduction.

If T is a Toeplitz matrix,

T = (cj-j) e R" ,

then one can easily show that T has the following displacement representation [5, 13-161,

Co 0 0 Coc -1  C1-M 0 0 0 0 0c-1 c- 2  c1..

CI Co 0 CO C2-, C1  0 0 0 C-. C2-,

coT= - c1)
0 c-1 0 0 c-1

Cot- 1 Cn- 2  CO 0 0 Co  C.- Cn.-2 C1 0 0 0 0 0

It is an interesting fact [51 that T-1 also has a similar displacement representation. To

give an explicit formula, we assume that the matrix T and its (n-1) x (n-1) leading principal

submatrix are nonsingular. Let z and v denote the first and last columns of T-r, respectively.

Then it turns out that we can write

z 1  0 0 v,,_ n- 1 0 0 0 0 0 Z. Z._. Zj

Z2 Zi  0 Vn V2  V3  0 0 0 Z. Z2

z IT- v 1  (2)

0 1 0 0 Z4
2,, Z, ._. Zj 0 0 V. , r.-I V.- 2  VI 0 0 0 0 0

It also holds that z I = v.. This formula was first given by Gohberg and Semencul in 1972 [7,

p. 86], [10] as one of a set of slightly different formulas of the type (2) for T- 1. We shall

describe a variant in Sec 2 (see Remark 2 in Sec 2). Here it is interesting to note that a simple

inspection of (2) yields the following recursive formula for the elements of T - 1,

t [T-' li+lj+ = z [T'lij + zi+v,I- - Viz,,j+1, (Aij a (ij) element of A, (3)

which was in fact first derived by Trench [211 in 1964. Its relationship to the Gohberg-

Semencul formulas and connections with the Christoffel-Darboux formulas for orthogonal poly-

nomials on the unit circle were made in (16].
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As one might expect from the above discussion, there can be several ways of establishing

Gohberg-Semencul formulas. But all presently known proofs involve a certain amount of alge-

braic and analytical manipulation. In this chapter we shall describe what may be regarded as a

"constructive" proof for Gohberg-Semencul formulas [7, p. 86, p.891 under the rather restric-

tive condition of strongly non-singular T, i.e., T with all leading minors nonsingular. On the

other hand, with this assumption, there are "fast" 0 (n2) algorithms for actually computing the

Gohberg-Semencul expressions.

Our proof follows the so-called "array method" discussed in [4]. In the array method, the

triangular factors of T-1 and T are simultaneously obtained via a sequence of elementary

hyperbolic rotations applied to a certain "pre-array" of scalars. We show in this note that a

slight modification of the pre-array leads to Gohberg-Semencul formulas. Our approach can be

extended to obtain formulas of the Gohberg-Semencul type for "close-to-Toeplitz" matrices.

The present contribution grew out of our studies on constructive algorithms [4] for fast

triangular and orthogonal factorizations of matrices given in a so-called displacement represen-

tation (see [14]). We discovered that one of these constructions not only gave a Gohberg-

Semencul formula for the inverse of a Toeplitz matrix, but also indicated a natural method of

extending the formulas to general non-Toeplitz matrices.

The displacement of a matrix A E Rn" has been defined as [141

VA a A - Z. AZOI, (4)

where Z. is the n x n lower shift matrix with ones on the first subdiagonal and zeros every-

where else. Suppose that VA is expressed as a sum of outer products,

VA = xyT.
ia-

Then it is easy to see, using the nilpotency of Z,, that A can be written as a sum of products,

a
A = L(xj)U(yj), (5)

i-I
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where as before L(x) denotes a lower triangular Toeplitz matrix with the first column x. The

expression in (5) is called the displacement representation of A. For symmetric matrices we

can refine this to the form,

pL(xi)LT(x ) - I L(x)L (xi). (6)
iml i-p+l

For a simple example, consider a symmetric Toeplitz matrix, T = (ci-j), co = 1. Then

we can see that

VT=-ZT=[ C. 2  T T
VT = T - ZR. .' 0 = X tX 2X2-,

where

x, = [ l c l ,  - -., c, ,  X2 = [0,C 1,-. ,C .IT .

It follows, as noted in (6), that

T = L(x1)L'(x) - L(x2)LT(x 2). (7)

The fact that the Gohberg-Semencul formula (3) for T-1 has a similar form as (7) is not

an accident. In fact, it was shown in (13, 14] that if the matrix A has the form (5), then IA-'I

(where I is the matrix with ones on the reverse-diagonal and zeros elsewhere) has the represen-

tation,

IA-1 = jL(xj)LT(yj), or A71 = YL(xdL(yi) (8)
i-I i-i

with certain vectors {xi, yi). (We may note that if we insist on a lower-upper type representa-

tion for A- ', we can always obtain this but with (x + 2 terms in general). The formula (8)

would be a generalization of the Gohberg-Semencul formula to arbitrary matrices, except that

the proof in [141 did not show how to actually construct a displacement representation of IA-1

or A-' from a displacement representation of A.
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This construction will be supplied in this chapter for a large class of matrices, and in

principle for all matrices. We shall first give a constructive proof of Gohberg-Semencul for-

mula in Sec 2. In Sec 3 we shall generalize the earlier notion of displacement representation.

Then we shall show that a certain partial triangularization procedure of the 2 x 2 block matrix,

rA,', A1.21
A A2.1 At2 A,. = strongly nonsingular, (9)

easily yields a displacement representation of the so called Schur-complement of A,,,, i.e., a

representation

p p 4j

A2.2 - A2 iAj1A 2 = L(xi)LT(yl) - L

iml iip+1

As an example, we shall obtain the Gohberg-Semencul formula for a Toeplitz matrix by apply-

ing the procedure to the block matrix

where the Schur complement of T is just -T-1. Then in Sec 4, we shall apply the procedure

in Sec 3 to various matrices, e.g.,

1 0 T T o T I 1 0

to obtain generalized Gohberg-Semencul formulas, or, equivalently, displacement representa-

tions, of the matrices,

(TTT) -I, T2T'tT2, T(TTT)-ITT, TT)-ITT.

2. A Constructive Proof of two Gohberg-Semencul Formulas.

Let us consider a symmetric positive definite Toeplitz matrix T = (ci-j) e R", co = 1.

Later, we shall indicate simple modifications of the poof for nonsymmetric but strongly non-

singular Toeplitz matrices. As shown in Sec 1. T has the representation,

T = L(x,)LT(x,) - L(x2)Lr(x2).
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Let us define the pre-array Ao, and a diagonal matrix J,

L(xi) 0: L(x ) R2
")C", J . R ] e (10)

where 0, and IN denotes the n x n null matrix, and the n x n identity matrix, respectively.

Suppose that we can find a J-orthogonal matrix 0 E R3 mG3 ,, viz., one satisfying eje T  j,

such that the post-array AoO has the form

0 0. 0.

Ao0 U L(.Y L(Y2). (11)

where L is a lower triangular matrix, and L(yj), L(y2) are lower triangular Toeplitz matrices

whose first columns are some yj and Y2, respectively, while U is not a priori constrained in

anyway. Then, because of the J-orthogonality of 0,

AaJ = AJAT,

which yields the following identities

L(x,)LT(xl) - L(x2)LT(x 2) = T = LLT, (12a)

L(xl) - L(x2) = I. = LUT, (12b)
UUT + L(y1)LT(yl) - L(y2)LT(y2) = 0.. (12c)

From (12b), we see that L-' = UT (therefore, U is upper triangular). Now (12a) shows that

T-1 = L-TL -1 = UUT.  (13a)

Therefore, (12c) implies that T-1 has the following displacement representation,

T - L(y2)LT(y 2) - L(yt)LT(yt). (13b)

Next we shall show how to construct 0 so as to obtain a post-array A of the form (11).

This can be done in several ways, but perhaps the simplest is to construct e as a product of

elementary hyperbolic rotations, which are J-orthogonal. (We could also use hyperbolic

Householder reflections.) Hyperbolic rotations, Hij(c) are defined as identity matrices except

for the following four entries,
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1 -1C

[Hi~j~c)]ij = [Hij()1jj = 1 = [Hih 1@ c),.I = (14)

We call the pair of indices (ij), the plane of rotation. The matrix Hij~(c) is real and finite

when hld < 1. In signal processing applications, ic is often called a reflection coefficient. Let

wT be a row vector with Iwi > Iwj I. We can annihilate wj, pivoting with wi , by post-

multiplying wT with H5j(wj1 wi),

w, • • wi • • Wj • • w JHij(wj1wi) = [w, • • wi'- • wi_! 0 Wj+! • • W.

For a moment, let us assume that the magnitude of pivoting elements is always greater than

that of pivoted elements and therefore, that lid < 1. A lemma given in the Appendix shows

that this assumption is always valid for a positive definite T.

A Simple Example.

Our construction is perhaps best followed with a simple example. Thus, before we

describe the general procedure, we shall illustrate the details with a 3 x 3 symmetric positive

definite Toeplitz matrix,

Ia 1 a21

T= a, I a X,x= [1, a1, a[2]0 X , a,, a2]T.

a2 a ]

We post-multiply the pre-array,

Ao = 1 O. 0. 1.1 Rs ,  (15)

with hyperbolic rotations H2,(icl) and H3.(iC1), where ict = a, to annihilate the Ist sub-

diagonal of L(x2) pivoting with the diagonal of L(x,) (see (16) below). To preserve the Toe-

plitz structure at the (2, 3) block, we also apply a "dummy" hyperbolic rotation H4.9( 1). This

will introduce a nonzero element P4 at the lower left corner in the (2, 2) block. These steps

are illustrated below.
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1 1I

at I at a, Pi

a 2  l a 1  aCfa21 a,

1&1 (16a)

1 1 3

1 1 54IAgjH2,7(KIC)

at is al P,

a2 02 1 I3 a2 P P3
-. ___ a A, (16b)

1 04 5 1 04 05

P5 P4  1365 04 4 N

41 P5 04 NP35

Ao-H 27(K1 )'H38S(K1 ) &o'HZ(i).H3.g(i)-H4.9cl)

Now we post-multiply A, with the hyperbolic rotation H3,7(K 2), where K2 U P3IP3, to

annihilate the remaining element f6 in the (1, 3) block of A1. Again to preserve the Toeplitz

structure in the (2, 3) block, we apply two dummy hyperbolic rotations. H4.s(c 2 ) and H5.9(KC2)

to obtain .

1 1

al PI al Pi

a2 2 Y1  a
-(16c)

S Y2 Y4 1 Y4

PS 'Y3 73P P5 Y3 Y2 Y3 4

4Y4 "ZP4P3 Y4 .) 7 "2 Y2 b 4

A 'H3 .7(K2) AI.H 3,7(K2)-H 4,8(K2).H59(C2)

[L 0o. 0.](7
U L(y1 ) L(y2) = "  (17)

Then as noted before (cf. (13b)), we have



-62-

T-t L(y2.)LTW - Ly)LT(y,).

The general procedure.

In general, we successively annihilate the 1st, 2nd, . (n-l)th subdiagonals of the

lower triangular matrix in the (1,3) block of A, by post-multiplying AO with a sequence of

hyperbolic rotations. The procedure of annihilating the ith subdiagonal will be called the ib

sweep, and the array obtained after the ith sweep will be denoted with A,. In the ith sweep,

we apply hyperbolic rotations on the following two sets of planes in A,-.,

Ai a [(i+l,2n+l), (i+2,2n+2), - •, (n,3n-i)), (18a)

Di a f(n+l,3n-i+l), (n+2 ,3n-i+2 ). •., (n+i,3U)J, (18b)

where Ai and Di stand for the sets of planes on which "annihilating" hyperbolic rotations and

"dummy" hyperbolic rotations are applied, respectively. Thus, if we display (18) for each

sweep, we have the pictorial representation:

i=1 2 3 - n n+l 2n+l 2n+2 3n-l 3n
i=2 3 n n+l n+2 2n+l 2n+2 3n-2 3n-1 3n

i=n-! n n+l n+2-2n-l 2n+l 2n+2 3n

pivoting columns pivoted columns

Within a given Ai (or D), any ordering of rotations can be chosen because the planes in (18a)

(or (18b)) are "disjoint".

Note that Ao has "Toeplitz structure" in the columns (1, 2,. ,2n) and

(2n +, 2n+2,.-. , 3n). Suppose that A,-, has Toeplitz structure in the columns

(i, i+l,- •, 2n) and (2n+1, 2n+2,. •, 3n). Then this Toepitz structure allows us to choose

hyperbolic rotations on the set Ai with identical reflection coefficients r, to annihilate the lth

subdiagonal elements in the (2,3) block of-A_-,

' &-H(), H,(c) £ H • _ ) (19a)
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Furthermore, by applying hyperbolic rotations on the set Di with the same ic, we can keep the

Toeplitz structure in the columns of (i+l, i+2,. - , 2n) and (2n+l, 2n+2, - •, 3n) in Ai.

Ai w Adl'].D.(K). HoD,(Ci) a H.+1.l.3.+1(i)H.+2,3ai+2(K;)" Hj,,(K-). (19b)
In each sweep, the null (1,2) block is untouched, and the lower triangularity of the (1,I) block

is maintained.

Hence, At will be the form of A in (11). and will have Toeplitz structure in the

columns of (n, n+l, • • 2n) and (2n+l, 2n+2,. - , 3n). Therefore, the diagonal elements of

L(y1) will be zero and the first column of L(yt), (i.e., Yi) will be identical to the last column

of U shifted down by one position.

Now we shall show that the displacement representation (13b) obtained by the above con-

struction is the (first) Gohberg-Semencul formula (2). Notice that

T-'ej = [L(y 2)L T(y 2) - L(y,)LT(yl)]ei = L(y2)Ltr(y 2)el = [L(y2)JLy2)el,

T-re. = (UUT)e. = WUI.RUen,
where e, denotes the vector with I at the ith position and 0 elsewhere. Therefore,

First column of L(y2) = L(y2)e = (T-'e)/[L(y2)]. = z .-V2z.

First column of L(y1 ) = L(yl)et = sd(Ue.) = sd(r'ef)[U].., = z j" 2 sd(v),

where sd(v) denotes the vector v shifted-down by one position, and we have used the easily

verifiable fact that

With these identifications, the displacement representation (13b) is exactly the Gohberg-

Semencul formula (2).

Remark I. The sequence of hyperbolic rotations, H,Or.) (see (19) for the notation) introduces

the ith superdiagonal in the (2,1) block, and the ith subdiagonal in the (2,3) block. On the

other hand, H,(X,) introduces the (n-i)th subdiagonal in the (2,2) block.
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Remark 2. Readers may have noticed that our construction of A, and therefore, the resulting

displacement representation (13b) is not unique. This is because we can use any J-orthogonal

transformation matrix 0. In particular, we can apply extra hyperbolic rotations on D,, with

any lil < 1, i.e., we can replace A.-, by

A.-IHD.(K), (20)

and still have the form (11). In fact, the second Gohberg-Semencul formula [7, p. 891

corresponds to the particular displacement representation (13b) obtained by choosing the

reflection coefficient Kc in (20) as the last reflection coefficient K, of any nonsingular

(n+l) x (n+l) Toeplitz matrix whose n x n leading principal submatrix is T.

Remark 3. Note that our construction of the Gohberg-Semencul formula needs 0(n 2) opera-

tions, because we need to keep track only two columns in Ai, and apply only (n-1) different

2 x 2 hyperbolic rotations. Our construction here is closely related to the classical Schur algo-

rithm [13, 18, 201, which has certain advantages for parallel computation. The first and last

columns of T-1, which define the matrices L, and L2 in the Gohberg-Semencul formula, can

also be obtained with O(n2) operations by using the Levinson algorithm [5]. In fact, Trench

[21] used this algorithm to obtain the "differential form" (3) of the Gohberg-Semencul formula.

3. Generlaized Displacement Representations and Schur Complements

First, we shall generalize the concept of displacement representation, and then give a fast

triangularization algorithm for a certain 2 x 2 block matrix. During the triangularization pro-

cedure, displacement representations for the Schur complement of the (1, 1) block will natur-

ally arise.

The following sum-of-products representation of a matrix A e R" ' is called a (general-

ized) displacement representation of A with respect to the displacement operators (Fl, F2):

A - K.(xi. F)K(y,, F2),
ijm
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where F e Rn"  and F2 E R 8 x are nilpotent matrices of index less than or equal to n, i.e.,

F' = F2 = O, and K.(xi, FI) e R m  and K.(y i , F2) e R x- are the so called Krylov

matrices,

K.(xi, Fj)mz[xj, Fixj....Fjx-'xj], K.(yi FT.) wm[Yj, FT.y,....F21-1Yi]

The matrix pair. { X, Y ), where X m [ x, x2 .. , x. ] and Y a [ y1 , Y2, • • , y, I is called a

generator of A (with respect to (Fl, F2)), and is denoted Ga(A, F1, F2). The number a is

called the length of the generator (with respect to (F, F2)). A generator of A with the

minimal possible length is called a minimal generator. The length of the minimal generator of

A is called the displacement rank of A (with respect to (F1 , F2)), and denoted as a(A, F1, F2).

If the matrix A is symmetric, then A can be represented as

A = Jl(xj, F)K°(xi, F) - 1 K,(xi, F)K.(xi, F), (21)
i-1 i-p+1

and the generator Gp+,(A, F, F) can be written as { X, X }, where X [x, .... x v I

and X M IP a-Iq.

A displacement representation of a matrix A can be obtained by using the following

lemma, whose simple proof we shall omit.

Lenua. For any A r R"X, if F1 or F2 is nilpotent, there exists a5 <min(m, n) such that

A = 7,.(xi. FI)KT(yi, F2) if and only if A - FAFf= xiyfT.
inl i-l

In later developments an important role will be played by 2 x 2 block matrices (9). For

simplicity, we shall first consider a symmetric matrix,
[A1, 1 ,

A [A, A2 2 J R(a )X ), A,, e RA%, A..2,e R "m , (22)

where A1,. is a symmetric positive definite matrix, and A.2 is a symmetric matrix.

For the matrix A in (22) we shall choose both displacement operators as
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F= 0 Z.

F=[Z' 0].
With this choice, K,,,(xi, F) in (10) will have the form

K m(xi, F) a L(x2.i) 0 L( e i) R "m ',  L(X2j) IE Rmxm,

where [ xfj, xA ] - xT, and L(x1 ) and L(x2j) are lower triangular Toeplitz matrices whose

first columns are xli and x2, respectively. The O's denote rectangular null matrices of

appropriate sizes.

Generators of Schur Complements.

We shall now show how to obtain the displacement representation (with respect to Z.

and Z,,) of the matrix A,,

A, s A2.2 - A AIT -

which is the so-called Schur complement of A,., .

1. Obtain a generator of A, say ( X, XX ), X = Ip ® -Iq.

2. Form the matrix A,

A K(xi, F),.. K(x,, F), K(xp+ l , F), .. K(xp+q, F)] (23a)

= "") L0(x) i) (23b)[I X4) LL~x4 +LL(X2 p. ) O

3. Post-multiply A by a J-orthogonal matrix E, where J n , (i.e., the

matrix e is such that OJOT =J), that will transform A as follows (We shall show how

to do this in the proof):

(i) K(x,, F) - [M L L is lower-triangular, L, is lower triangular Toeplitz

(ii) K(xi, F) - 0i1, Li is lower triangular Toeplitz, 2 !5 i : p+q.

The result will be
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Then it turns out that

A,,, = LLT, (25a)
ATr = ML ,  (25b)

1,(25)

A, a AU - A2AI.IAI2 = jL.LT - I - (25c)
i-I i=p+l

Note that the generator of A, has the same p and q as the given generator of A itself, a

fact first discovered by Mof (19] and used by him to derive "divide-and-conquer"-type algo-

rithms (see also [3]).

Proof The results in (25a, b) follow immediately by equating the (1, 1) and (2, 1) blocks on

both sides of the equality,

A = MAT = AJreTAT = ?j,&T.  (26)

Furthermore, equating the (2, 2) blocks of (26) gives

P T P+qA2,2 = MMr + I Li Li I Li Ljr ,

i-I i-p+!

from which the equality (25c) follows by noting that
MMT  TrLrqI T -I

i TL-IA1. - AI0.AjA 1 2 .

The only thing left to do is to show how to construct 0 so as to obtain A of the form

(24). This can be done in several ways, but perhaps the simplest and the most useful is to

construct 9 as a product of (p+qXn+m) x (p+qXn+m) circular (or Givens) and hyperbolic

rotations. Givens rotations Gj(Oc) with reflection coefficiem r, are defined as identity matrices

except for the following four entries,

1 - [Gjj0()]K4=

(I + ICI2) t ' [GidQc)J--(I + ]I1 2)V' (I + IKI2) "

We annihilate (L(x 0), L(x,). . L(x 1.,)) in (23b) with n sweeps (0th. Ist

., (n-)st sweeps). The kth sweep annihilates the kth sub-diagonals of the p-I matrices,
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L(xl, 2), L(xl, 3).., L(xj) ) with Givens rotations, and the kth sub-diagonals of the q

matrices, (L(xl,+), L(xl,,+2). . , L(xl,,,)) with hyperbolic rotations, pivoting with the

diagonal elements in L(xl.) in both cases.

In the kth sweep, if k > n--m, then we apply 'dummy' rotations to the (n-k+l)st to the

mth columns of K(xi, F), pivoting with the (n+l)st to (m+k)th columns of K(xt , F), in order

to keep the Toeplitz structure in { L(x2,.), L(x2,). . , L(xpq) ). This will introduce a non-

zero lower triangular Toeplitz matrix in the (2, 2) block of K(x l, F). After the (n-I)st sweep,

we shall have A in (24).

0

Operation Counts.

To annihilate n rows out of n+m rows, we shall need approximately
t

4(p+q-l)Zk=2(p+q-l)x(n2+2nm+2m+n) multiplications. This will be less than the
k-M

0(n 3) multiplications needed to obtain the factors of a matrix A,.1 and its inverse unless p+q

is nearly n. There are many interesting matrices (see Sec 4) for which p+q - n.

Example (A Gohberg-Semencul formula for Toepitz matrices).

Let T = (ci-j) be an n x n Hermitian positive definite Toeplitz matrix. Consider the

matrix T I.
A m [ 1  0]. (27)

For F a Z. 4Z., it is easy to see that the displacement rank of A with respect to {F, F) is

two, and that a generator G2(A, F, F) is given by (X, XE), where

r x,., 1,2 1
X I M *mei c1 2elj, Er 4I-1,

where
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XI - C O1/o2"[ , C I, C"" , i]T, X1.2 = C 2 0, C1 , ", C . .,I]T, el = (1, 0, , 0 ]T .

With this generator, the matrix A in (23) will have the form

EL(x11I) 0 IXuI.) 01
A -cO1 2 . 0 O c 12I . 0 (28)

Now note that the matrix A in (28) is in the form same as (10). The procedure will triangular-

ize the matrix A into a matrix A of the form (1I),

A=[Lo0o 01.
~ U L, L2 0j

Since the Schur complement of T in A in (27) is -T-1, formula (25c) will yield

T-'= L21j - LLT

Non Symmetric Matrices.

For non-symmetric rectangular matrices A one can formulate a similar procedure. We

form the matrices A1 and A2 as

A, N [ K(x1. F,), -, ic~xa, FI)] A2  [K~yj. F2). , K(yd, F2 )] (29)

and annihilate the elements in A, and A2 by post-multiplying A, and A2 with spinor matrices,

instead of Givens and hyperbolic rotations. A spinor matrix is defined as the identity except

for the following four entries,
1SJ~ _ _ -C1  K2z

[Sijlidi = [Sij ljJ = I1+ X 12 [Sij lid -- I (l + 1112 Sijljji - 1 +I lC2 )

( + KI2)' (+ K,K2)6' + (lK,2)"'

Because of the invariance property that

A = A, A! = As. SJAL

a similar procedure to that in the symmetric case will give a displacement representation of Aa,

As a A22 - A2,AtJA,2 = i (30)

where Li and UT are lower triangular Toeplitz matices.
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4. Some Generalized Gohberg-Semencul Formulas.

The first step of the procedure to obtain a generator for the matrix

As = A2 2 - A2,1A-.jAI. 2 is to find a generator of the matrix

At, A12 ]
A= IA2 ,1 A2,2

This can be done by using the lemma in Sec 3. In this section, we shall give generators of

some interesting A's, from which the corresponding Gohberg-Semencul formulas for the

matrices of interest will be evident.

Example I (Generator of inverse).

Let B be an n x n symmetric positive-definite matrix, with a known generator,

W, WE ), E = , e -Iq with respect to {Z,, Z, }. Consider the matrix,

A a I1. 01. (31)

Then by using the lemma in Sec 3. it is easy to see that { X. XX ), where

X w •1 w. el w'P+, j w,+, el ] :=(2

0 0 ej/2 0 ]0 e/2, Ip+ -q+ (32)

is a generator of A with respect to {Z, @Z,, Z, eZa). The length of the generator of B-1

obtained with the above A will be p+q+2. However, if the given generator G.+q(B, Z., Z.)

satisfies a condition called admissibility [181 then, as we shall see, we can obtain a generator of

B-1 with a length less than p +q +2.

Example 2 (Inversion with admissible generators).

A generator for a Hermitian matrix B e R"', { W, WE ), X = Ip -Iq with respect to

(Zn, Zn) is called admissible if el e range (W), i.e., if there is a linear combination of the

columns of the generator that will give the unit vector.



Let Gp,, (B, Z,, Z,) be admissible, and

[1, 2, j,p+.q ]W r = et.

Then it can be checked that the matrix.

[B I"I  I ,2 l2
A a , 1I. Il 1 g12l~ _ "+ } ti 

2  (33)

i-l i=p+!

has a generator I X, XT ), with respect to IZ. (Z,, Z. 4Z. ), where

[ W, Wp Wp+I WP +q E P4-1.(4g Ile, gxpe, -NT+Iel " , -tp+,ej ] .I I l.(4

Since the Schur complement of B in (33) is 1I, -B -1, we see that the generator of B-1

obtained with the A in (33) will have length p+q+1 if Tr * 0, orp+q if = 0, consistent with

the results first obtained in [181.

For an example of a minimal admissible generator (besides generators of Toeplitz

matrices), let us consider an m x n Toeplitz matrix T = (cij) with a full column rank. The

matrix TTT has a minimal generator [41, f W, WX ), Z = 12e-1 2 , with respect to {Z,,, ZR),

where

w -TTt/llt 1112, w2 = t2 , w3 = Z.Z.TW, w4 = Z1 1, (35a)
it=( CO, C1, -•o- ITc,- ]h t=[ 0, C-1, • - 1, I.=1[ c,_ - , • • . IT, ]" (35b)

and I -112 denotes the Euclidean norm. This generator of TT T is admissible since

[1/1 ft11112, 0, -1/itl112, O]WT = e[. (36)

Therefore, the matrix A in (33) would have the form

A" l, 0 '(37)

and the procedure will give a generator of (TTT) -d of length 4. The displacement representa-

tion of (TTT)-I is useful in solving Toeplitz least squares problems (m ' n).

Example 3 (Generator of TTTj'T,).
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Let T1 e R "  and T2 = (Ci.j) 6 Rn' be Toeplitz, and symmetric positive-definite

Toeplitz, respectively. If we define

As[ TT o (38)

then A has a generator { X, XM ), . 0 I245-12, with respect to {Z, , Z3  Z,)j, where

jvI U2 V2 U2 1
X- ul ej/2 ul -el/2 '

v, = the first column of T2 devided by co,

u, = the first column of T[,

V2 = same as v, with the first entry equals to zero,

u2 = the first column of T1 with the first entry equals to zero.

With the above A, we can obtain a j.nerator of TTTj T! with length 4.

The displacement representation of TjTTj'T 1 is useful in solving weighted Toeplitz least

squares problems (n >i m), as arise in certain parametric time series identification problems.

Remark 1. One can obtain a generator of TTT 1 by setting T2 in (38) with I,,. This procedure

will need 0 (ran) computations, which is of the same order as evaluating the closed form

expression in (35a).

Remark 2. It is interesting to note that x(T[Tj'Tj, Z., Z.) < 4, whereas

ct(TfT 2T,, Z., Z,) S 6. The reason is that the first matrix can be identified as the Schur

complement in a 2 x 2 block matrix, while to do so for TTT 2T, requires going to a 3 x 3

block matrix vhose displacement rank can be 6.

Remark 3. Once one has a generator of TTTi'TI, one can obtain a generator of (TTT 'ITi)-

using the matrix A in (31) and the generator in (32). This will give a generator of length 6.

However, it turns out that minimal generators of TTTi'TT ae admissible (with 11= 0), and the

displacement rank of (TjTi'Tj)-' is less than or equal to 4 (see Sec 5).
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Example 4 (Generator of the projection operator).

Let T be an m x n Toeplitz matrix with full column rank. If we define

A =[T T, (39)

then I X, XX ). a I2e-I2, where

[ Wl W2  W3  W4 1

X - /wlt W2 e t w/t1112 0]J wi and t, are as in (35). (40)

is a generator of A with respect to [Zs eZ,0 , Z, Z. ). By applying the procedure in Sec 3

to the above matrix A, we can obtain the generator (of length 4) of the projection operator

I,,, - T(TT)-'T T on the ((m-n )-dimensional) kernel of TT. Also, in this case, the matrix M

in (24) turns out to be the orthogonal basis of the range of T, because by (25a, b)

TTT=LLT, and T-=MLT, which implies MTM=I., Me R',.

In fact, we have the QR factorization of T (see also [41).

Example 5 (Generator of the pseudo-inverse).

Let T be an m x n Toeplitz matrix with a full column rank. If we define

Tm [TT TT>,j

then by using the results in (36) and (40), we can see hat A has a generator, X, Y ,with

respect to (Z. OZ.. Z OZ) where

[ a W1  W2  W3 W4], U[ W1  W2  -W3 -W4 1
X [eJlI1tI2 0 el/Iltl)J 2 0 p Y t/11t 1112 el -t 1i11t 1112  0

and wi and t, are as in (35). With the above generator, we can obtain a generator of the

pseudo-inverse of T of length 4.

5. Concluding Remarks.

We have presented a constructive approach to the famous Gohberg-Semencul formula for
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the inverse of a Toeplitz matrix, and obtained various generalizations of it. We note that for-

mulas of Gohberg and Semencul type are closely related to the problem of finding displace-

ment representations (generators) of various matrices.

For further development, we may mention that the procedure for 2 x 2 block matrices

given in Sec 3 can be easily generalized to N x N block matrices. For instance, by considering
3 x 3 block matrices, one can obtain a generator of [A2 - A&AjIA, 2 r- . As an example,

we can obtain a generator of (TITTI'Ti) -, by working with the matrix

AE[A Ai.2] [T2 T, A []A-A T o0  A,., =  Tr  'A1.2 I

The length of the obtained generator will be 4. As another example, a generator of TTT2T

can be obtained by choosing

A T2l  I i2 = T
A,, 1 0 o]. A1.2=[T]

We also remark that divide-and-conquer versions of the procedure in Sec 3 can be readily

obtained [3]. By using this approach to compute the displacement representation of (TTT)- ',

one can, for instance, obtain least-squares solutions for Toeplitz systems in 0 (m log2m) opera-

tions.

There exists an interesting relationship between the reflection coefficients of a Toeplitz

matrix T and those of r-' [15]. A constructive proof of this relationship can be found in [2].

Finally, we should note that several authors have explored the problem of fast inversion

of various structured matrices by employing somewhat different, but related, definitions of dis-

placement. We may mention the work of Heinig and Rost [12], Gohberg et al [9], [10], L.

Lerer and M. Tismenetsky [171. Some of the formulas therein are also generaliztions of the

Gohberg-Semencul formula. More work needs to be done to clarify the relationships between

these different results and approacheL
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APPENDIX

Lemma Al. Let T be a symmetric Toeplitz matrix. Then the (.,) defined by the construction

in Sec 2 will be less than one in magnitude if and only if T is positive-definite.

Proof. If Ir, I < 1 for all 1 < i < n-1, then we can complete the transformation to get the

matrix Ai in (11), and T = LLT. Hence, T is positive-definite. Now, let us assume that T is

positive definite, and hcj I < I for 1 < j < i-i. After the (i-l)st sweep, the upper-half, A[YI

of the matrix Ai_1 has the form,

B&C A D ], A_J[Aij_ =T,

where A is a nonsingular lower triangular matrix, and C, D are lower triangular Toeplitz. Let

c and d denote *he diagonal elements of C and D, respectively. Suppose that Ic I < Id I, and

therefore, I1i I> 1. Then T cannot be positive-definite, because

s : Ij[A _ S = C2 - d2 < 0,

where

sT =[-bTA-, eT], eT =[,O,. , 0, bTMthefirstrowof B,

which leads to a contradiction. 0
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Chapter 4.

Displacement Structure for Hankel, Vandermonde and
Related (Derived) Matrices

Abstract

We introduce some generalized concepts of displacement structure for structured matrices

obtained as products and inverses of Toeplitz, Hankel and Vandermonde matrices. The Toe-

plitz case has already been studied at some length, and the corresponding matrices have been

called near-Toeplitz or Toeplitz-like or Toeplitz-derived. In this chapter, we shall focus mainly

on Hankel- and Vandermonde-like matrices and in particular show how the appropriately

defined displacement structure yields fast triangular and orthogor-l factorization algorithms for

such matrices.
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1. Introduction.

Many signal processing problems require solving large systems of linear equations, either

directly or via (weighted) least squares. The basic solution tools are triangular factorization

and QR factorization. These factorizations require O(n 3) or O(mn2) flops (floating point

operations) for an m x n matrix, which can often be excessively large. Therefore, attention

focuses on structured matrices, with an eye both to computational reductions and to implemen-

tability in special purpose (parallel) hardware. Structured matrices arise in various problems in

coding theory, interpolation, control, signal processing and system theory.

Very common examples of structured matrices in the above areas are Toeplitz, Hankel

and Vandermonde matrices:

t0  t-I -R+l

t I t0 t-,,+2

"=T _ = eR "  , (1)

tm-1 tr-2 "t +4

ho h, h.-I ]
h , h2 h.

H = (hi+-2) = . R" , (2)

h._, h. h.-2

V 0 V(c) (3)

K = diag( ki, k2, .., k.), k , 0, C =[1, 1,. .T

These matrces have certain shift invariant properties: The (infinite) Toeplitz matrices are diag-

onally shift-invariant, Hankel matrices are "reverse diagonally" shift-invariant, and Vander-

monde matrices are vertically shift-invariant apart from K.
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However, it is easy to see that, for example, Toeplitz structure is not invariant under vari-

ous frequently occurring operations such as multiplication, inversion, triangular and orthogonal

factorization. What is often invariant is a suitably defined notion called the displacement rank.

For example, let

VA aA -Z.AZ, A e R"  (4)

where Z, is the n X n lower-shift matrix with ones on the first subdiagonal and zeros every-

where else, and define the displacement rank of A by rank(VA). Then it can be shown that a

Toeplitz matrix T and its inverse T-1 have the same displacement rank.

rank(VT) = rank(VT- ') = 2. (5a)

Moreover if T is Hermitian, then

inertia(VT) = inertia(VT-). (5b)

Displacement structure as just defined has by now been studied in some detail (see [12]

for a recent survey, and also [131, [17)). with many results for closely related definitions in [8]

and [10] among others.

In this chapter, we shall briefly study an extended form of (4),

VuF/ )A a A - Ff AFbT, (6)

and especially another definition

A'(FIFb)A a Ff A - AFb,  (7)

where the matrices (Ff. F b ) can be fairly general subject to certain restrictions described in

Sec 2.

For reasons that will soon appear we shall call the matrices V(FIb)A and A(F ,b)A the

Toeplitz displacement, and the Hankel displacement of A with respect to displacement opera-

tors (Ff, Fb}. The rank of V(Fby4 will be called the Toeplitz displacement rank of A

(with respect to (Ff, Fb)), and denoted as aV,.Fb)A. The rank of &(FI.bA will be called

the Hankel displacement rank of A and denoted as Pl /tbA.
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We shall say, roughly, that a matrix is "structured" (e.g., "close-to-Toeplitz" or "close-to-

Hankel"), it the matrix has a displacement rank (with respect to some [Ff, Fb)), independent

of the size of matrix. The interesting fact, which enables fast algorithms for triangular and

orthogonal matrix factorization and matrix inversion, is that such structure is inherited under

inversion, multiplication and Schur complementation. This chapter will demonstrate this fact

for various types of structured matrices.

First in Sec 2, we establish the claims just made about inversion, etc. Based on these

results, we present a general factorization algorithm in Sec 3, which will be further specialized

in later sections. Thus in Sec 4, we shall show how to compute the triangular factorization of

Vandermonde matrices. Triangular factorizations of close-to-Hankel matrices will be presented

in Sec 5, and QR factorizaions of Vandermonde matrices in Sec 6. References to prior work

on each of these applications can be found in the corresponding sections. This chapter comple-

ments our recent work on Toeplitz and close-to-Toeplitz matrices (see Chapter 2 or [51). On a

first reading, readers can skip all "Remarks" in this chapter without loss of continuity.

2. Some General Properties of Displacement Operators.

In this section, we shall examine useful choices for the displacement operators (F1 , Fb 

in the general definitions (6)-(7), and derive some results on Schur complements that will allow

us to easily study the displacement structure of matrix products and inverses.

One of the criteria for choosing displacement operators is to make the corresponding dis-

placement ranks of A as small as possible, because as will be seen presently the displacement

rank determines the complexity of various operations on A. The special structures in the

matrices (1)-(3), and the results (5) naturally suggest the shift matrix Z. as an important candi-

date. In fact, for a Toeplitz matrix T e R". a Hankel matrix H e R'' and a Vandermonde

matrix V = V(cK) e R", we can readily see that
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to ti 1 r-

V =7 - Z.T- ! I has rank 2, (8a)
I* 

I

0 -h o -hi "h,-I
ho

0

_CTK-1 -

A(Z X-I)V = Z. V - VK -  ( has rank 1. (8c)

But how about non-Toeplitz, non-Hankel or non-Vandermonde matrices, but ones that are

known to be the inverses of some Toeplitz, Hankel or Vandermonde matrices, respectively?

The following lemma indicates that these matrices also have displacement structure, a fact first

noted in [13] for Toeplitz matrices.

Lemma 2.1 Displacement rank of Inverses. For any nonsingular matrix A,

a (F ,.FI.)A ( ( X F Tf ,)A 1, )3 F , b A ( I A .

Proof.

o F,F.)A = rank[(A-F 1 AFbT)A - ' ] = rank[I-FI AFbTA-],
OE(FarFry4- 1 = rank [(A- -FbTA- 'F)A ] = rank [-FbTA-'Ff A].

But the nonzero eigenvalues of (Ff A XFbTA - ) and (FbTA-IXFI A) are identical. Therefore,
a-F.F")A = ca(FT.FT4-l. Next, note that

O( ,.byA = rank [(F A -AFb )A - I- = rank ((Ff -AFbTA-')],

(Fwb.Fr)A - ' = rank [A (FbTA- 1-A ='F )] = rank [AFbT A- -F 1 ,
and therefore, P ,f'7'y = P30'./rA-1. 0
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In particular, we see immediately from Lemma 2.1 and (8) that

rank [T- ' - ZTT-'Z. ] = rank [T - Z. Z.T] = 2, (9a)

rank[ZTH1 - H-'Z.] rank[Z.H -HZ] = 2, (9b)

rank[K-Iv -  - V-Z] rank[Z.V - VK - 1] = 1. (9c)

Similar results can be obtained for matrix products. However, it will be useful to first

consider the displacement properties of the so-called matrix Schur complements. The forma-

tion of Schur compiements is the heart of triangularization procedures for matrices. Moreover

we shall see that working with Schur complements of appropriately defined block matrices

leads immediately to results on the displacement structure of matrix products (and inverses).

The following lemma generalizes a result first given in [191.

Lemma 2.2 Displacement rank of Schur complements. Let S" r R(- )x("' ) be the Schur

complement of A e R"' in M e R"', i.e., let

M ]D] 'S a[ e RM , S=D - CA -B, A: nonsingular.

If Ff e R"- and Fb C RRxx are block lower triangular matrices, i.e.,

1 (10
Ff F4 F b F e Ri x/ , F b E Rix/ ,  (10)

then

a(FI.b)S= aPF.Fb1 (la)

Proof. It is not hard to check that M- ' has the form

M - 1 -

Therefore,

='F.F~ cxO(FbTi?)Mr~ _'2 (j.j~_ = =V.lS OVf.b (12a)
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O(F.F)M = O(Fb.FI :(Fr.FfT)S = O = PFf Fb)S| (12b)

where the first and third equalities in (12a) and (12b) follow from Lemma 2.1. The second

inequalities follow from the block lower triangularity of Ff and Fb, and from the fact that a

submatrix has smaller rank than the matrix. 1

Remark 2.1. Without the tiangularity assumption on Ff and Fb, the Schur complements

may have larger displacement rank than the matrix itself. See Remark 2.4 below.

Applications.

Judicious use of Schur complements will allow us to easily derive the displacement pro-

perties of matrix inverses and matrix products. For example, we could alternatively have

obtained the results in (9) as follows. Consider the (extended) matrices

MIN" I O'M2 N M3 E (13a)

and define the displacement operators

F, a ZIT 0 F 2 U Z 0 F;- O 0- A K- 1 0 a (13b)

Then by using Lemma 2.2 one can check that

aczr DT-' = o-.F 1)MI = 2, (13c)

NZ 
- = P(F2F AM2 = 2, (13d)

10(r-, , -)V = D;1/vFl = . (13e)

Lemma 2.2 is also useful in determining the displacement ranks of products of matrices.

For example, let

M I Tr 0 Z."

Then -TTT is the Scur complement of I in Mi, and therefore,

pp~ffI - 4=- o .. TrT. (14a)
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Similarly, let

M2 (>T ], F w

Then, we can see that HTH has low Hankl displacement with respect to (Z4, ZT) (instead of

(Z., Z. )) because

O(F.F)M2 =4= rHTH. (14b)

Finally, for the product of Vandelmonde matrices, consider the matrix

M3aV ] Fa[ 0 Z.

Then we can see that VVT has rank-2 Hankel displacement

O(F.)M 3 = 2 = O3z.7.) W .  (14c)

This is not surprising because WT is, in fact, a Hankel matrix. Also some experiments will

show that VTV does not seem to have a low-displacement rank with respect to "simple" dis-

placement operators.

Remark 2.2. Referring to the result in (14b), we may note that not HTH, but rather HTIH,

where 1 is the reverse-identity (ones on the antidiagonal) matrix has low Hankel displacement

rank with respect to the usual Hankel displacement operators (Z., Z.). To see this consider

the following matrix M 2 and displacement operator,

M2= [Hr , F[O . " (15)

Then

O(.)f2= 4= pa. XJI)H.H

Remark 23. By considering 3 x 3 or higher order block matrices, one can determine the dis-

placement rank of other composite matrices. For instance, the matrix 1(H4-HH OH 2Yi,

where Hi is a Hankel matrix, has Hankel displacement rank 4 with respect to (F, F), where
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Fm Z. 0 0

ozo.

Remark 2.4. One might have noticed that the Hankel matrix H also has a low Toeplitz dis-

placement rank, viz, that

V zTH = H - ZHZ. z = 2.

The only difficulty of using this displacement in the context of the fast algorithm in Sec 3, is

that the displacement operator Z4 is not a block lower triangular matrix. Therefore, the Schur

complements of H can have larger displacement ranks than that of H. With a slight

modification of Lemma 2.2, one can show that all Schur complements of a Hankel matrix with

respect to this displacement operator have rank 3.

Remark 2.5. A displacement of a matrix A can characterize the matrix A if we can solve the

equations (6) and (7) for A uniquely (the equations (6) and (7) are necessarily consistent in our

context). It is well known that the (consistent) equation (6) uniquely determines the solution

A, regardless of what the displacement operators (FFI, Fb are. However, the (consistent)

equation (7) has non-unique solutions (see, e.g., [11], [15]) if (and only if) there exists a pair

of eigenvalues Xi(Ff) and Xj(F 6) such that

;L, - , (Fb) = 0. (16)

This condition holds for most of the displacement operators for close-to-Hankel matrices that

we are interested in, which is unfortunate because we am concerned how to find L and U such

that A = LU (in a fast way), given only the displacement of A. We shall circumvent this

non-uniqueness problem by imposing an additional constraint (see Sec 3).

3. Fast Partial Triangular Factorizatlon using Hankel Generators.

In the rest of this chapter, we shall only consider Hankel displacement structure.
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Corresponding results on Toeplitz displacement can be found in [5]. Also it is important to

mention at this point that we consider only strongly nonsingular matrices for triangular factori-

zation, and full column rank matrices for QR factorization.

General Schur Reduction.

We note (see, e.g., [9], also [51, [17], [18], [23], [241) that the standard triangular factori-

zation procedure can be regarded as arising from the recursive computation of the Schur com-

plements (SO) of the leading principal submatrices of a given matrix. Let

AoiSoaA e R"R , and define Ii e R"", u, e RAxI, d, *0 and the ith reduced matri Ai

recursively by

I FObv OdxnM.,)A,_t =  li di [ uT - + Aj. Ai n L O{._i $, (17a)

I
Given Ai-1 , we can determine the quantities in (17a) as

Ii = Ai-je i , u, = AIT1 ei, di = 1/[li , = l/[uj]i, (17b)
where ej is the unit vector with one at the ith position and zero's elsewhere, and [vij denotes

the ith element of the vector v. The computation of the reduced matrix Ai from Ai_. will be

called (one step) Schur reduction [9], [17]. Using r Schur reduction steps, we can obtain the

(r-step) partial triangular factorization,

FA = iduT+ A, (18)
i-I Idd,

ULDUT + A,.
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The "trapezoid" matrices L, U and the diagonal matrix D will be called (r-step) partial m-

angular factors of A. Notice that r Schur reduction steps take 0 (rn2) flops.

Schur Reduction using Hankel Displacements.

The displacement rank of a matrix A can be much smaller than the rank of the matrix A

itself. Also if the chosen displacement operators (F1 , Fb} for a given matrix A e R"

satisfy the condition in Lemma 2.2 for all 1 S i < r, viz, that

the r x r leading principal submatrices of Ff and Fb are lower triangular, (19a)

or pictorially,

F =(19b)

then the displacement ranks of the reduced matrices (Ai: 05z S r) do not increase:

~(FI.Fb/4i s PIJ~t)A,- . I 1< i < r. (20)

Note that AFt.Fb)Ai is determined only by O(on) parameters, whereas the matrix Ai itself

needs O(n2) parameters. Therefore, we can hope that the Schur reduction procedure in (17)

can be done more efficiently with 0(ron) flops (instead of 0(rn2) flops) if we successively

compute A0 /Fb)Ai rather than A1. This is indeed the case as we shall see shortly. For the

rest of this chapter, we shall restrict ourselves only to displacement operators that have the

form (19), because (20) is a nice property to have.

Recalling the definition of displacement,

A(Ft.FbyAjj = Ff AiI - AiIFbT, Ff and Fb have the form (19),

we can check that

[A(,,.v&)Aj_.lJe = (FI A_1-A._.FbTX = (FL-[Fb],fI)l, (21a)

(-F ATt +AT-FfT)ei = (Fb[F] 1, I)u,, (21b)

where [F )ij denotes the (l,j)th element of F. Therefore. Ii and ui can be obtained by
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1, = (F .-[Fbji) [A(p ,,Fy)Ai-ei., U= "(Fb--[Ff 1I) [A (jfPA,_i-Tei, (22)

where the superscript # denotes an appropriate generalized inverse. After determining li, ui

and di, we can obtain the displacement of the reduced matrix Ai as

A(FI.F b)A = Ff Ai - AjFbT (23a)

= FA_! - Aj_FbT - F li di uT + lidiuTFbT (23b)

= A(FIj, AI._ - Ff lidi u + lidi uTFbT. (23c)

If (Ff -[FbIf3l) and (Fb-[Ff l]ji) are singular, then there are many li's and uj's that

would satisfy (21). Let us consider separately the nonsingular and singular cases.

A. Nonsingular cases.

If (Ff-[Fb],iiI) and (Fb-[Ff ]Ijl) are nonsingular, i.e., if [Fb]1,i and [Ff ]i are not

eigenvalues of Ff and Fb, respectively, then li, ui and di and therefore Ai will be determined

uniquely by taking the ordinary inverse in (22).

Example 3.1. Let Ff = Z, and Fb = K-1. These displacement operators are usefid for the

Vandermonde matrix V = V(cK) e R" because they give the smallest displacement rank

Note that (Z,,-[K-']il) and (-IL-[Z. ]jI) = K- ' are nonsingular for 1 5 i < n.

B. Singular cases.

If (Ff-[Fbij]l) and/or (Fb-[Ff]1,8 1) are singular then the Schur reduction using (22)

and (23) is ambiguous. Note that we are not completely free in choosing Ff and Fb, because

the structure of a given matrix dictates appropriate F1 and Fb that give the smallest displace-

ment rank. Instead, we shall overcome this difficulty by using the following two approaches.

The key observation behind these approaches is the fact that only the projection of I, and u

lying in kernel(Ff.-[Fbji ) and kernel (Fb-[F ]I ) are not uniquely determined.

If we have additional information about such ambiguous components of I, and u,, then

we can determine Ij and ui correctly. We shall use this approach for the trlangulaization of
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the inverse of Vandermonde matrices in Sec 4.

The other approach is to extend the matrix A c R to a larger one, say A e R .

such that A is a leading principal submatrix of X. Let E Rx" and U e R" be n-step

partial triangular factors of X. Displacement operators Ff and/ b for X are chosen such that

the following is true,

E . kernel(Ff-[Fliij) and UT Lkernel(Fb-(Fflil), (24)

where A.LB denotes ATB = 0. Now, we can perform n-step parial triangularization of A

using (22) and (23) unambiguously, because we can compute T (the ith column of E) and U

(the ith column of UT) by taking the Moore-Penrose inverse (pseudo-inverse) in (22). After

finding the n-step partial triangular factors of A e R" ', we can obtain the triangular fac-

tors L and U of A simply by deleting the m - n rows of/E.and U.

Example 3.2. Let H e IV xA be a Hankel matrix in (2). For Hankel matrices, the (desirable)

displacement operators are {Z,, Z, ). Note that (Z-[Z,,] i.il) = Z. is singular. However, if

we define

[f H 01 R(+IE+) (25a)

then I is still small (in fact, 4), and partial triangular factors of H and the dis-

placement operators (Z.+,. Z.+,) satisfy (24).

Example 3.3. Let H E R be a Hankel matrix in (2). Define

a2= 1  jeR 0 R(25b)

where UR is the "reverse upper triangular" Hankel matrix (with zero elements in the lower-

right corner) such that H2 s Hankel. As an example, for a 3 x 3 Hankel matrix, UR has the

form,
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H[ h l h2  h3 h4 0

H= hl h2 h3I UR h40 j
h2 h3 h4 0

Now the partial triangular factors of 172 and the displacement operators [Z2., ZU } satisfy

(24).

Generators of Matrices.

For a given matrix A e R" , any matrix pair, (X, Y) such that

A(FFb )A = XY ,  X a [ xI, x2 .... xPl ] e R ,'4  YYtY2,.,...yp] R' 4

is called a (Hankel) generator of A with respect to (Ff, Fb ) . The numbers P ae called the

length of the generator (with respect to {Ff, Fb}). A generator with respect to {F1 , Fb}

with its length equal to the displacement rank is called a minimal generator (with respect to

Ff , Fb )).

Example 3.2 (continued). Generator of H1. The matrix H1 in (25a) has the displacement,

0 -ho - -h.-2 -h.-_
ho -h

0
h,,-2 -h2,-2

h., h. h,.-2  0

and therefore has a generator, (X1, Y I), where

10 0 0 0 0 01
0 -- h. ho -ho h. • 0

X -=  Y =  (26a)
0 -h,-2 h2,_2 0

0 1 0 h.-I -h._ i  0 1 0

Example 3.3 (continued). Generator of 1f2. The matrix [ 2 in (25b) has the displacement,
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0 -h 0 *-h 2 -2 o2
ho

and therefore has a generator, {X2, Y2}, where

hzj' =1 0 0 ']'Y=[ h _2_ (26b)Xfi0 ho h2-2, Y f  1 0 0 .(2b

Fast Schur Reduction using Hankel Generators.

Now, let

A(F,Fb)Ai_ 1 = X(i-I)yO-I)T .

Notice that the matrix products involving A(FfFbAiI in (22) can be done more efficiently as

[,&(Ff ,)Aijjei = [X(-)[Y(i-)Te ]]. [A & ,)A,& lr4 i iTej = [Y(i-)[X(i-)TeI]]. (27a)

where matrix-vector products are performed in the sequence as shown with the square-brackets.

Furthermore, a generator of Ai can be obtained as

X() =[X('-) -Fflld, lidj, y(i) = [y(-), uiFbUjI, (27b)

because of (23c). Although the generator given in (27b) is not minimal, it is possible to delete

the two redundant columns in X( ) and y(i) in (27b) in an efficient way [16].

However, the above Schur reduction procedure is still not efficient, because of the matrix

inversions required in (22), and the matrix-vector multiplications FfI and Fbu, in (27b).

Nevertheless, for structured matrices A (e.g., Hankel, block-Hankel, Hankel-block, Vander-

monde etc), displacement operators, Ff and Fb are extremely simple so that such operations

are trivial.

4. Fast Triangular Factorizatlon of Vandermonde Matrices.

The problem of finding the coefficients of the nth degree interpolating polynomial can be
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formulated as a problem of solving an (n+l) x (n+l) Vandermonde matrix equation. Bjorck

and Pereyra first noted [2] that the divided-difference scheme (which needs O(n 2) flops) for

finding Newton's form of the interpolating polynomials, in fact, solves the Vandermonde matrix

equations. They also presented an algorithm that needs O(n 2) flops for the factorization

V-1 = UL, along with other extensions. Recently, Gohberg, Kailath and Koltracht [8] obtained

the algorithm of Bjorck and Pereyra by a different route and gave different extensions. In this

section, we shall present two fast algorithms for computing the factorizations V = LU as well

as V-1 = UL. We believe that our approach is more fundamental and provides richer insight.

Consider the Vandermonde matrix

e TK

V = V(cK) =r R"x ,  (28a)

where

K = diag( kl, k2, • ,k.), J
T  [1, 1, • -, l.(28b)

Note that

Aq. -,)V = x(M)Y( ° )T, x(D) z el e Rx l , y(O) . _K-1e RX. (29)

Therefore, V has a generator {x(°), yo)} of length 1. Now the Schur reduction steps special-

ized for Vandermonde matrices can be summarized in the following theorem.

Theorem 4.1. Let AzjI)Vit = x(i-l)y(i - )T. Then

Ii = "Y(-)]i(-kZ,)-Yi-l, (30a)

ui =-KY(i-tyi-i)rei =-K[x(it)]iY(i-), (30b)

di = I/DliL, (30c)

and A(Z, X~)Vi = x(i)y(i)T , where

U)W [_y(14Jx(i- d, [J. ,,z. i, + (d. [iJ,+,/k,.,),]) , (31a)

y(i) ,- (- t -I)_ d([ + d 1i tK-u1. (31b)
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Proof. (30) follows immediately from (22). From (27b), we have

X(WY(i)T = x(i-l)y( -t)T - Z. li di uT + li di uTK- 1. (32)

The matrix X(i)Y(i)T, which is the displacement of the ith reduced matrix, has the null rows

and columns from 1 to i. Because it is a rank-one matrix, a minimal generator of X(i)Y(i)T

can be obtained simply by taking the (i+l)st row and the (i+l)st column with an appropriate

nonralization;

NOi} = X0i)YW*)Tei+jI[x(i)Ii+i, y(i) = Y(i)X(i)Tei+,. (33)

The generator {x(i), y(i)} in (31) follows from (33), after inserting (32) for X(i)Y(i)T. 0

Now we shall summarize the algorithm.

Algorithm 4.1. Fast Triangular Factorization of a Vandermonde Matrix

Input: A generator {x(° ), y(O)} in (29) of V m Vo;

Output: Triangular factorization, V = LU;

for i := 1 to n do begin

Compute li, uj, di using (30); 1* O(n) flops (see Remark 4.1 below) */

Obtain a generator of Vi using (31); /* O(n) flops */

end

L := l1, 2 , 1 ]; UT :f [u, u 2, . u,,]; D .= diag(d1 , d 2, d,);

return ({L, U. D J);

Remark 4.1. The matrix-vector multiplication, p a (--kZ,)-x( -1 ) in (30a) needs only 0(n)

flops, because it is essentially the back-substitution procedure solving the bi-diagonal system,

(-kiZ,,)p =i x(-)

Remark 4.2. The above algorithm can be applied to any matrix V of the form (28a) with an

arbitrary lower triangular matrix K and any vector c (rather than the c in (28b)). However, for

such cases the algorithm may take greater than 0(n 2) flops.
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Triangularization of the inverse of Vandermonde Matrices.

Consider the matrix,

M -a[1 ] , V R" ,  (34)

and its partial triangularization:

M= [U] D (UIL 2 ]+ 0 0]. (35)

where U2 and L2 are necessarily upper-triangular because M is banded. We n see that

V- ' = U2DL2 , (36a)

because

V = LIDU1 , 1 = U2DU1 , i = LIDL 2. (36b)

Therefore, we can obtain the factorization V- 1 = U2DL 2 by the n-step partial-triangularization

of the matrix M using the fast Schur reduction. To do so, we first need to find a generator of

M with respect to appropriate displacement operators. Our choices of displacement operators

are

F! =[- K,] Fb=[ K- (37a)

where C, is the circular shift-down matrix, i.e.,0 1
= N1  3hC. -- r,,, R" ' ". (37b)

Note that AF,.,F)M = x(°)Y)T where

x(O) = e, e RxI, y(O) = (cTK-, .e r  R2T x, e, e Rx .  (38)

Note that Ff and Fb in (37a) have the form in (19). Also (Fb-[FI] ;) is nonsingular

for 1 1 <5 n, and therefore, ui can be obtained by taking the ordinary inverse in (22). How-

ever, (F -[Fb],jl) is singular for 1 ! i < n, and



kernel(Ff - [Fb].i) = span I ], ze JRax, ei r RMxI, 1 5 i < n, (39)

where z is the null-vector, i.e., [z i = 0 for all i. Therefore, if we take the pseudo-inverse in

(22) for li, then only the element [li ],,i is not determined. However, note that this element

[Ij ],, can be determined by other means. Namely,

[i = ],j = [ui]),

because U2 = (DUI - ' from (36b).

Remark 4.3. The reason of using the Fb in (37a) rather than Fb in (13b) is to make

Fb-[Ff ij I be nonsingular. We cannot, however, use C, in the place of Z, for Ff, because

the resulting F1 would not have the form (19).

Now we shall summarize the n-step partial triangularization with the following theorem.

The proof is similar to that for Theorem 4.1, and we shall omit it.

Theorem 4.2. Let A (Ffb)Mi n = x(i-1)y( -1)T, where Mo m M and F1f, Fb are as in (34) and

(37a), respectively. Then

U, = -(Fb-[Ff Jil)-Iy(i-1)X(i-I)Tei, (40a)

Ii = (Ff-[Fb ]iil)+x(i-i)y(I-)Tei + e.+i/(di .[ui 1]), (40b)

di= l/[1i i, (40c)

where A + denotes the pseudo-inverse of A. Also, A(F.F6,b)Mi = x(i)y (i)T, where

1(8) = [ di-,,,, - duJF i, + (di fu, L+l/k 1+,)IjIrx()8 +i. (41a)

y (') =_ [X- di [1i I ui + di [I, 1+jFb U,. (41b)

Note that the computations of (40) take only 0 (n) flops because

(Fb-[Fl ],I)yl = 0 ].

(F I (Fb1 ijl)+ [ *j(I-kZ.)-' ] e
(Fl[Fbifl+ : 0 KWi 1, K ( ) a=K except [K lji : 0,
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We shall summarize the algorithm.

Algorithm 4.2. Fast Triangular Factorization of V- 1 .

Input: A generator [x(o), y(O)) in (38) of M ME M o e R2e)O,

Output: Triangular factorization, V- 1 = UL;

for i := I to n do begin

Compute li, ui, di using (40); /* O(n) flops */

Obtain a generator of Vi using (41); /* O(n) flops */

end

L :=[ 1,12, . J; UT :=[u PU 2, ,u.J; D :=diag( dI, d2 , . ,d n );

return (D and the bottom halfs of L, UT);

5. Fast Triangular Factorization of close-to-Hankel Matrices.

In this section, we shall only consider strictly lower triangular displacement operators F1

and Fb, i.e., those with zeros on the main diagonal. It will be seen that the use of such dis-

placement operators greatly simplifies finding minimal generators of Schur complements. Such

displacement operators can be used for Hankel, Hankel block and block Hankel matrices.

Berlekamp [1], [191 (see also [31, [7]) was perhaps the first to describe a fast 0(n 2) algo-

rithm (needs inner-product computations) for solving Hankel matrix equations; the closely

related Berlekaznp-Massey algorithm [19] is an algorithm of Phillips [21]. Rissanen [22]

extended the results of Phillips to block-Hankel matrices; The Berlekamp-Massey algorithm

involves certain inner-product computations, which is a bottle-neck for parallel evaluation.

Recently, following earlier work of Kung [14] and Citron [7], Lev-Ari and Kailath 1181

presented another fast algorithm that does not need inner-product computation. The results in

this section can be regarded as an extension of the results of Lev-Art and Kailath [181 to

Hankel-block and block-Hankel matrices. Furthermore, we shall give a fast algorithm for corn-

L II
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puting the triangular factorization of the inverse of Hankel matrices.

Let (X, Y ) be a Hankel generator of a matrix with respect to strictly lower triangular dis-

placement operators (Ff, Fb that also satisfy the condition (24). (Otherwise, we assume that

the matrix has been extended appropriately such that (24) holds.) We say that a Hankel genera-

tor is proper if, for a certain i, all the elements in the ith row of X and above, except for the

element [X ]1., are zero, and all elements in the ith row of Y and above, except the element

[Y Iij are zero. Thus a proper generator has the form

*0 -0 0- 0"

X=[xI,,x01 * = =yl,. y] - (42)

Before we show how to convert a non-proper generator to a proper one, we shall summarize

the one-step Schur reduction with the following theorem. Often we shall denote a proper gen-

erator as (X,, Yp I for clarity.

Theorem 5.1. Let A(F,,a)AI _. = X ~iY$iI)T, where

' - - x -, -, ... -) -  ' y 

Then

Ii = yu,-') ,(x -V , ui--xP(-)Ij(Fb)+yf-1), dj = lII L,, (43)

and A F.yAi = X()Y
( )T, where

x 0) a [(xj('-')- d,[x['-I],oj, xy-), .-, xk-' , (44a)
Y(')- ye-'), y -I)q .• . (y-I)-dy -')Ij.)]. (44b)

Proof. (43) is immediate from (22). Using (43), we have

F'id, = [yk-'jd-), FIuj =-[,[-',y0-0.

Therefore, from (27b)

= Ix~'- ), -[.(i-l)Jid x '-), iid~I, y(a = [r(i-l. ua, .- [1 fu -1)1 i-t)l (45)
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Now, (44) follows from (45). 0

We can obtain the triangular factorization of close-to-Hankel matices by applying

Theorem 5.1 repeatedly as described below:

Algorithm 5.1. r-step Partial Triangular Factorization of Close-to-Hankel Matrices.

Input: A generator (X(°), y(O)} of A w A0 r R";

Output: Partial Triangular Factors L e RM, and U r RrE ;

for i := I to r do begin

Construct a proper generator of A_. 1; /* See below. *1

Compute li, ui, di using (43);

Obtain a generator of Ai by (44);

end

L :=[I1,1, ', ,,]; UT := [u1, u2 , u,1; D := diag(d1, d2, -- ,d,

return (L, U, D);

Example 5.1 Hankel matrices. One can use Algorithm 5.1 to find the n-step partial triangu-

larization of the extended matrices in (25) with any of the two generators in (26); both genera-

tors will need the same amount of computation. Triangular factors of Hankel matrices are

obtained from the partial triangular factors of the extended matrices. Also note that Z+ = ZT.

Example 5.2 Block-Hankel matrices. The block Hankel matrix,

[BoB, B-
B I B2 B . xHm . e Rbx ,  Bie Rb'  (46)

B-I BN B2,2,

has a low-rank displacement with respect to the block shift displacement operator Z . How-

ever, this displacement operator and the block Hankel matrix (46) do not satify (24). We first

add a block of null rows and a block of null columns to (46) to get the extended matrix
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/7 e R(*+l ')x(n+l)b. Note that H also has low displacement rank with respect to

{ (+l , One can easily find a generator of H with respect to these displacement

operators. Now, we can find triangular factors of H from the nb-step partial triangular fac-

tors obtained by using the algorithm 5.1.

Example 5.3 Hankel-Block Matrices. Consider the following Hankel-block matrix B and its

extended matrix B,

B [H3, H3 ]' B=- 0 1eT JI)A+l) Hi Rn x.

The matrix i has displacement rank 6 with respect to {Z2,, Z2,+) We can obtain triangu-

lar factors of B from the 2n -step partial triangular factors obtained by using the algorithm

5.1.

Example 5.4 Inverse of Hankel Matrices. Let H E R" be a Hankel matrix. Define the

matrices

[H 7]T ,M 0 1 C R 2x+')x(2z l),  (47)

where 7 is the reverse identity (ones on the antidiagonal) matrix. The matrix M is a Hankel-

block matrix of the form of B in Example 53, and the matrix H has displacement rank 4 with

respect to {Z2.+,, Z2.+). We use the Algorithm 5.1 to get n-step partial triangular factoriza-

tion of U,

1A= C D[ UGO0]1+[ S
6T

Note that

H-'=U 2DL 2, U2 mlC, L2 mG1,

where U2 and LT are upper-triangular, because
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H=LDU, !=CDUI, 1=LIDG.

Example 5.5 Inverse of Hankel Matrices. Instead of using the extended matrix M in (47),

one can use the following extended matrix,

H2 0I 1,
T 0 6T  (4+l) (48)

I2.00

where H2 is as defined in (25b), and 12. is the 2n x 2n identity matrix. The matrix M in

(48) has displacement rank 2 with respect to (F. F), where F = Z2, 19zT+1 . Also one can

check that I1FFY = XYT, where

X 0 ho - - h2.- 2 I 1 0 •• 0 0 (49)

Note that n -step partial triangular factors of M and the displacement operator F satisfy (24).

Therefore, we can use the Algorithm 5.1 to get n-step partial triangular factorization of )l,

and obtain triangular factors of H-1 .

Construction of Proper Generators.

The basic tool for constructing a proper (Hankel) generator is the use of elimination

matrices Eid(rj). defined as the identity except for the element [Ei(Oid)l = T1. Notice that

Ejji(1) is also different from the identity, except that [E1j()jj = -T1. Let {X, Y) be a non-

proper generator of A. Without loss of generality we shall assume that [X j.j * 0. If not, we

can always interchange (implicitly) columns of X and rows of yT to obtain such a generator of

A. We can annihilate all elements in the ith row of X except the element [X]i. by post-

multiplying with the n-i elimination matrices pivoting with the element [Xi.,

wher E ($), Y E(IJl.3T1)
where Tlt = -{,[X k1X i..
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Again assuming that [Y]ij 0, we can similarly annihilate all elements in the ith row of

Y except the element [Y]p by post-multiplying with the n-I elimination matrices;

E Ij8('*_j)EV2.p(yV2) • • Eijp(yj),  X E _Tp (VI.I)E 1-2 (yV2) -- E- y)

where yk =-[Y]i 1 [Yj]i.p. Note that the last annihilation EID does not destroy the zero at

[X] 1i . This procedure will require 2n elimination matrices, and therefore 20n flops.

If a matrix A is symmetric, then the matrix Ar.F)A = XYT is skew symmetric, and there-

fore, has the same number of positive and negative eigenvalues. Hence the symmetric dis-

placement has the form

A(FA X = XPX . P [ ]

[Is 0

where 78 is the 8 x 8 reverse identity matrix (Check the generators (26a) and (26b)). We call

the generator [X, XP T ) skew symmetric. With a skew symmetric generator (X, XP T }) note

that we only need to apply

X E1,2(T12)E1.3(113)' • Ej(Tjp),

to obtain a proper generator. Also, we only need to compute I in (43) and X(') in (44a), and

Algorithm 5.1 will give the Cholesky factorization A = LDLT.

Remark 5.1. Algorithm 5.1 for finding the Cholesky factorization of the symmetric Hankel

matrix in (2) by using the generator (26b) (choosing alternative pivoting elements) is identical

to the Euclidean algorithm for finding

GCD(p(x), q(x)), p(x) •ho x - +. •+ h2.3x + h2-2, q(x) •x ' l

We encourage readers to check this equivalence by using the 3 x 3 Hankel matrix,

H= 321

2 14

Remark 52. AlgoIthm 5.1 reduces to the algorithm of Sugiyama et. al. [241 If we use the

generator (49) to find the triangular factorization of the inverse of Hankel matrix. Also the
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0 (n log2n) algorithm of Brent et. at. [41 (see also (61) for solving Toeplilz system of equations

is closely related to the divide-and-conquer version of the algorithm by Sugiyama et. al. after

permuting the rows of a Toeplitz matrix to make it Hankel. Furthermore, Berlekamp-Massey

algorithm can be regarded as the "Levinson version" of the above procedure, so that one can

work with only the bottom part of the algorithm applied to (49) (see [51).

6. Fast QR Factorization of Vandermonde Matrices.

We shall show that the Algorithm 5.1 can be used for the QR factorization of the tran-

spose of the Vandermonde matrix,

VT = [c.Kc,. , K" - c ], K=diag(k 1, k2,..,k,).

First, notice that the matrix WT * H is a Hankel matrix,

cTKc cTK 2c cTKc

VVT = H = (hi+j-2) =  T~ CTKc c*x' Rnx .•cT K'mc cTKm~ € c Tc-i

cT K c CT Kx+lc cTK 2xIc

Let us define

HM( 4 +x E RU+1) ' + ,  (50)

where H, is as (25a) and VT = V, Kgc 1. Note that

P(F,.F I = 4. F, -.+* OK - 1

=F',F'I4I = XPXT, (Sla)

where

1 0 0 0 0 T7" -1]

0 -- 0 1 0 0 -1
X =0 -h. • -h2.- 2  0 0 0 P I (51b)

0 ho h._I ki't  I;' L 1 ,

It is easy to check that the displacement operators (Ft, Ft) and the n-step partial triangular

factors of ?,I satisfy (24). Therefore, we can use Algorithm 5.1 for the n-step partial
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triangularization of

M1 [R Q ] O (52)

Comparing (50) and (52), it is easy to see that

VVT = RTR VT = QR, QTQ= I.

Remark 6.1. Instead of using the matrix MA in (50), one may use the extended matrix

where H 2 is as in (25b), and

Ir = V, W 1, W aK"V.

For the matrix M?2, one can check that

D(F2,F2)92 = 2, F 2 * Z2. OK
-i,

A(F2 yF2M2 = XPXT,
where

X [= 0 ho • •h2,-2 kil  • k.-!  1 0

7. Concluding Remarks.

We introduced some generalized notion of displacement structure and developed some of

their properties. The displacement structures associated with Toeplitz and close-to-Toeplitz

matrices have been the most studied so far, with some new results in (5]. In this chapter we

have focused on Hankel and close-to-Hankel matrices, and presented a general algoritun for

triangular factorization of such matrices and their inverses. This general algorithm was also

extended to obtain the triangular factorizations of Vandermonde and close-to-Vandennonde

matrices and their inverses, and the QR factorizatin of Vanderminonde matrices and close-to-
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Vandermonde matrices. (The QR factorization of Hankel matrices can be obtained via the QR

factorization algorithm for Toeplitz matrices [5]). Relationships with all earlier algorithms for

these problems have also been noted. We remark that Algorithm 5.1 can be easily imple-

mented as a divide-and-conquer fashion. The approach taken in [61 can be used for this pur-

pose.
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Chapter 5.

Divide-and-Conquer Solutions of Least-Squares Problems for
Matrices with Displacement Structure

Abstract

A divide-and-conquer implementation of a generalized Schur algorithm enables us to

obtain (exact and) least-squares solutions of various block-Toeplitz or Toeplitz-block systems

of equations with 0 (a3n log 2n ) operations, where the displacement rank a is a small constant

(typically between 2 to 4 for scalar near-Toeplitz matrices) independent of the size of matrices.
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1. Introduction.

In recent years, there has been considerable research on fast algorithms for the solution of

linear systems of equations with Toeplitz matrices. The Levinson and Schur algorithms allow

solutions with 0 (n2) floating point operations (flops) for systems with n x n Toeplitz

matrices.

In 1980. Brent et al [51 described a scheme for obtaining a solution with O(nlog2n)

flops. This was based on two ideas - the use of the Gohberg-Semencul formula [11], [121, [16]

for the inverse of a Toeplitz matrix, and the use of divide-and-conquer (or doubling) techniques

for computing (generators of) the Gohberg-Semencul formula.

Let x and y denote the first and last columns of T-1 e R"'. Then if the first component

of x, say x1, is nonzero, Gohberg and Semencul [12] showed that we could write

T-1 = --[L(x)LT(I.y) - L(Z.y)LT(Z.1.x)], x1 s 0, (1)x1

where !n is the reverse-identity matrix, Z, is the shift matrix,

1 0
I. 1/  ,z"- 1 0

110

and

L (v) = a lower-triangular Toeplitz matrix with first column v.

The significance of (1) in the present application is that the product of a vector and a lower- or

upper-triangular Toeplitz matrix is equivalent to the convolution of two vectors, which can be

done using 0 (n logn) flops (see, e.g. [4]).

Brent et al used a divide-and-conquer scheme for a certain Euclidean algorithm to factor-

ize row-permuted Toeplitz matrices (i.e., Hankel matrices), and to obtain the vectors (x, y) of

the Gohberg-Semencul formula with 0(nlogen) flops [See 191 for the connection of Brent et

at's approach to other related results]. Later Bitmead and Anderson [3] and Morf [201 used
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another approach based on the displacement-rank properties of matrix Schur complements, to

obtain similar results; while this approach allows for generalization to non-Toeplitz matrices,

the hidden coefficient in their proposed 0 (nlog2n) constructions turned out to be extremely

large (see Sexton et al [24]). Later Musicus [21], de Hoog [10], Ammar and Gragg [2] used a

more direct approach based on a combination of the Schur and Levinson algorithms to obtain

better coefficients; in particular, Ammar and Gragg made a detailed study and claimed an

operation count of 8n log2n flops. With this count, the new (called superfast in (21) method

for solving (exactly determined) Toeplitz systems is faster than the one based on the Levinson

algorithm whenever n > 256. We should mention here that Schur-algorithm-based methods

are natural in the context of transmission-line and layered-earth models, so it is not a surprise

that similar techniques were also conceived in those fields - see Choate [71, McClary [191 and

Bruckstein and Kailath [6]. A good source for background on the Levinson and Schur algo-

rithms, transmission line models, displacement representations as mentioned and used in the

present chapter may be [13].

The method we have taken in this chapter is in the spirit of the generalized Schur algo-

rithm [8]. Our algorithm can be applied to non-Toeplitz matrices, and does not have the draw-

back of the large coefficient in the methods of Bitmead and Anderson [31 or Morf [20]. Furth-

ermore, we can readily handle matrices such as (T T I and (TT)-ITT, where T may be a

near-Toeplitz matrix or a rectangular block-Toeplitz matrix, or a Toeplitz-block matrix; in par-

ticular, therefore, we can also obtain the /east-squares solutions of over-determined Toeplitz

and near-Toeplitz systems with 0 (n log2n) flops. Our algorithm is closely related to the algo-

rithm of Musicus [21]. However, our presentation is conceptually much simpler (especially for

the non-Toeplitz cases treated in [21]) than previous approaches; in particular, we do not use

the relationship between the Schur algorithm and Levinson algorithms needed in [2], [10], [21].

An outline of our approach is the following. For a matrix E,
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EE1.1 E1,21
E = E 2.1 E2 , E 1.1, nonsingular,

the Schur complement of E I., in E is

E.1 - E2.1EiE12 .

Notice that matrices such as

S1 a T - ', S 2 a (TTTY- 1, S3 a (TTT)"ITT (2)

can be identified as the Schur complements of the following extended matrices,

E 1= [ TI, E2= T TT I E3 = -T T T (3)

Now the matrices E in (3) have the following (generalized) displacement representation, for

suitably chosen matrices (F1 , Fb},

a
E = IK(xi, F1 )KT (y, Fb),

i-I

where K (xi, F/) and K (yi, Fb) are lower triangular matrices whose j columns are (F/ )i-')xi

and (Fb)(j-)y i , respectively. The smallest possible number a is called the displacement rank

of E with respect to (F1 , F b ). For an example, let T be an m x n scalar Toeplitz matrix,

with m > n. Then the matrix E2 has displacement rank 4 with respect to (F, F), where

F = O Z and has a displacement representation [14],

IE2 = YK (ylFrx, F) - j:K(yj , F)Kr~i F). Yj 0 -4. X i . (4a)

iml i-3 I

If we defae xT a [wf, vt], note that the matrix K(xi, F) in (4a) has the form

L(vi) 0 e Re~a  , 0 Re R , 
(4b)

where L(w 5 ) and L(vi) are lower triangular Toeplitz matrices with first columns w and vi.

Given a displacement representation of E, we use a certain generalied Schur algoriun

(see Sec 2) to successively compute displacement representations of the Schur complements of
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all the leading principal submatrices in E. For the above example, n steps of the generalized

Schur algorithm will yield

0 0 1 4K(,)TU= T K(ui, F)Kr(ui, F) - YK(ui, F)Kr(u8 , F),o (TrT)- I = i-3

where the top n elements of ui are zero. Therefore, if we denote the bottom n elements of ui

as U2j, we can have the displacement representation

2 4

(TTT) - ' = IL (u2,i)Lu 7L (uZj)L (u2i).
i-I i-3

Now, the generalized Schur algorithm, which is a two-term polynomial recursion, can be

implemented in a divide-and-conquer fashion with 0 (a3f (n)logn) flops, where f (n) denotes

the number of operations for the multiplication of two polynomials. Therefore, if the multipli-

cation of two polynomials is done again by divide-and-conquer, i.e., by using fast convolution

algorithms, then the overall computation requires O(a 3nlog2 n) flops. We remark that the fac-

tor cO can be reduced to a if several convolutions can be performed in parallel. Once we have

a displacement representation of the desired Schur complement S, the matrix-vector multiplica-

tion, Sb, can be done with 0 (an logn) flops using fast convolutions. As an example, we can

obtain the least squares solution for the Toeplitz system,

Txf=fb, Te Rm, m 2n

as follows:

(i) Form TTb using 2 fast convolutions,

(ii) Obtain a displacement representation of (TTT) -T using the divide-and-conquer

version of the generalized Schur algorithm,

(iii) Form (TTT)-t(TTb) using 8 fast convolutions.

If we had obtained the displacement representation of (TTT)-ITT directly (using E3 ), then step

(i) above would not be needed.
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2. Generalized Schur Algorithm.

After a brief review of basic concepts and definitions, we shall describe the generalized

Schur algorithm of references [8] and [141, but in a polynomial form important for the divide-

and-conquer implementations. We shall need to recall some definitions and basic properties.

Generators of Matrices.

Let Ff and Fb be nilpotent matrices. The matrix

V(F/Fb)A a A - FI AFbT

is called the displacement of A with respect to the displacement operators (Ff, F b ). Define

the (F', Fb)-displacement rank of A as rank[V(F,.h)A]. Any matrix pair [X, Y) such that

V(FFb )A =XYT, X N[XX2, ... -Xa], Y N[y1, y2,..,ya ] (5)

is called a (vector form) generator of A with respect to (FI, Fb). The generator will be said

to have length o. If the length a is equal to the displacement rank of A, we say that the gen-

erator is minimal. A generator such as Y = X L where 2- is a diagonal matrix with 1 or -

along the diagonal, is called a symmetric generator.

The following Lemma [141. [15] establishes the connection between generators and dis-

placement representations.

Lemma. Let E be an m x n matrix. If Ff and Fb are nilpotent, then the equation
a at

V(F b)E = xiy T  has the unique solution E =K(x,,Ff)KT(y&.Fb), where
I I

K(x i , Ff ).jxi, F;, x , Ff (O)xi] and K(y i , Fb).(y, F byi, , Fb(n-)yl].

Choice of Displacement Operators.

The generalized Schur algorithm operates with generatos, and. needs 0 (amn) flops for

sequential implementation and 0 (ot3n log2n) for divide-md-conquer implememation. Therefore,

for a given matrix A, we should try to choose the displacement operators that give the smallest
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. If the matrix A is an n x n Toeplitz matrix, the appropriate displacement operator F is Z.,

an n x n shift matrix. If A has some near-Toeplitz structure, then F would have forms such

as

B

F=Z.OZ., F= Z.,, F=z.0,

where 0 denotes the direct sum, Z. OZ. a ], and denotes the concatenated

direct sum.

Example 1. Let T = (i-) be an m x n pre- and post-windowed scalar Toeplitz matrix, i.e.,

t0 = if j>i or i>m-n +j with m >n. Then it is easy to check that the matrix

C =(cjj)aTTT is also a (unwindowed) Toeplitz matrix, and with respect to

(Z. OZ., Z. OZ,), E 3 in (3) has a generator [X, Y) of length 2, where

X2 = [0, C, , c, -1, 0, •, oJr/c0i,

x= [c0 , c1, , C,, t t 1* 0, .9 0 •, oTICr02,

Y2 - "0, C 1,•• Cn, to, t 1 , •,• 0 IT/c a. 0

Example 2. If T is a Toeplitz-block matrix, i.e.,

T1.t Tl,2 Tj

T2.1 T22 T2.N
T e 1R4, T, = scalar mi x nj Toeplitz matrix, (6)

TM. TM.2 TuM ,

then for the matrices E in (3), we choose [8), [141 the following displacement operators

M N
Ej: Ff = [. JOF,. Fb [O,.],eF 1. m n (7a)

i-1 i-1
N N

E2 : F = [OZ,,IOF,, Fb [RZ,Fj, m n, (7b)
i-1 iI
N N M

E3 : Ff = [*Z1.,jOF,. Fb = [eb ., .z., (7c)

N
where F, can be either Z, or AZ,,. However, for the divide-and-conquer kmpementation, we
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N
prefer to choose eZ,, ; see the Remark in Sec 4.

Example 3. On the other hand, if the matrix T in (3) is a block-Toeplitz matrix with [3 x

blocks,

BO B- 1  B- 4 +1
B 1 Bo B-N+2

T= B eR"" , BAte R 4 . m-Mp, nsNpl. (8)

BM-1 BM-2 B- +J

then for the extended matrices E, we should choose 19] the displacement operators

Ff = Z~aZ!, F1 = Z- eZI, (9)

where, for E1 we assumed that T is a square n x n matrix.

Generators of the above and other extended block-Toeplitz or Toeplitz-block matrices can

be found in [81 and [141.

Polynomial Form of Generators.

In general, the displacement operators F1 and Fb for both extended block-Toeplitz

matrices and extended Toeplitz-block matrices have the form,

N NF = eDzNP n a E n,. (10)
i I i-I

We shall say that the displacement operator F in (10) has N sections. One of the key opera-

tions in generalized Schur algorithms is matrix-vector multiplication, Fv, i.e, a sectioned shift

operation. With the polynomial representation of vectors, the shift operation has a nice alge-

braic expression. For a given vector v, let v(z) denote the polynomial whose coefficient for

the term z' is the i+lst component of the vector, i.e.,

Vf= [ 0 , yV, V 2 ,.. Vx-l1T -+ V(Z) = VO + VIZ + V2 Z2 + -  (11)

Then,

Zv-v'f[O~0 v v..v,_i] r - v(z)z mood ztm.

i
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In general, for the matrix whose displacement operator is the F in (10), let us define

integers (8,) by

iSi Y, Ynk, 81 < 82 <" < SN.
kh-

Let v(z) and 0(z) be polynomials of degree less than or equal to n-I, and define the degree at

most (ni-l) polynomial, v1(z), by

v(z) = v(z) + z"v 2(z) + za'V3(z) + + z6N-'v.(Z). (12a)

Given two polynomials v(z) and O(z), and the displacement operator F in (10), the (polyno-

mial form) displacement operator OF is defined by the following operation,

V(Z)OFO(Z) z r(z) m rl(z) + z8,r 2 (z) + r 3(z) + • + z61-1rAN(Z), (12b)

where

ri(z) N vi(z)O(z) mod z M ', (12c)

i.e., ri(z) is the polynomial v(z)O(zP) after chopping off the higher degree terms, so that ri(z)

has the degree at most (ni - 1).

Let

X = 1x, 2, ,xJ, Y = [Yz, Y2 •,y l

be a generator of a matrix A with respect to certain (F , Fb }, and let

Xi --+ Xi (z), Yi "+ YA~W).

Then we call the pair of polynomial vectors, (X(z), Y(w)), where

X(z) W I x1(z), X2(z), • •. x,(z) ), Y(w) 0 [ y1(w), y2(w).", yU(w) ],

a (polynomial form) generator of A. with respect to (polynomial from) displacement operator

Example 1 (Continued). The matrix E3 in (3) has a generator (X(z), Y(w)) with respect to

OF I O I Ff' 64 -Z F - Z 64I aNO
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x(z) = [co + c +z + c+CZ - zM ]cO-1/,

x 2(z) = [c z + cz 2 +. • + cxz - zx+lIco 12

yI(w) = [Co + cIw + •+ cw n + tow" l + twx+2 + • +t,-nw,+l]Co 1/2

Y 2(W) = -[C W + + C. W" + tOWn'+ + tlW" +2 + + t..w"+I]c01/2

Also notice that

X(Z)OFIZ = [CoZ + c1z2 + • + c._,z" - z+ co-

! y (w)®Fbw =
-- [CoW + Cw 2 +• + Cx_, W n + town +2 + tWx+3 + • + tM1/lWm+i]Co 1l 2 . 0

Next we note that for given vectors a and b such that aTb * 0, we can always find [8]

matrices 0 and I' such that

a q= [a '0. 0, .- ,0], b Tp = [b 1', 0 , 0, . . 01,  q- IoT = 1 .  (13)

and therefore, aTb = a 'b '. We define polynomial matrices 0(z) and 'F(w) by

O~z =0 , F(w) 0 1P (14)

We remark also that if a = b, then 'F(w) = O(w), and if b =a, where I a IP 0-4q, then

'F(w) = 9(w)Z, so that we only need to find, and post-multiply by, O(z).

Generalized Schur Algorithm

Let a matrix E have a generator (Xo(z), Yo(w)) with respect to ([®ye OF.}" and

define E1j by

[ E1.1 E2
E= E2,1 Ezj

where E1. is a k x k strongly nonsingular matrix. i.e., the one with ail nonsingular leading

submatrices. The k-step generalized Schur algorithm (8], [141 presented below in polynomial

form gives a generator of the matrix,
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0S] S 3 E 2.2 -E 2.E-EI 2 e R(m- AXR- k)

with respect to [(F ' @Fd, or equivalently, a generator of S with respect to I opf, Orb).

where F1 and Fb denote the trailing square submatrices of size (m - k) and (n - k) of Ff

and Fb, respectively.

Algorithm (k-step Generalized Schur Algorithm)

Input: Generator of E, {Xo(z). Yo(w)); displacement operator I 'O ® eFb }

Number of steps k.

Output: Generator of S (Xk(z), Yk(w))

Procedure GeneralizedSchur

begin

for i := 0 to k - I do begin

aT [z-iXi(z). 0 ;

bT (z -Yi(z),6

Find EO(z) and 'Y (w) to transform aT and bT such as (13);

Xi+J(z) = Xi(z) , O Ff(z); Yi+](w) = Yi(w)OF,'i(w)

end

return {X(z), Yt(w))

end

Remark. The polynomial vectors, Xi(z) and Y(w), have degrees m-I and n-I respectively,

for all i. Each step eliminats the non-zero lowest degree term, and therefore the terms of

X5(z) and Yi(w) whose degrees am less than z' and w' are zeros.

By applying the generalized Schur algorithm, one can obtain generators, or equivalently

displacement repttsenta ion, for various interesting Sdr complemens.
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3. Divide-and-Conquer Implementation

The (sequential) k-step generalized Schur algorithm in Sec 2 can also be implemented

efficiently using divide-and-conquer approach. We shall only explain how to find Xk(z);

essentially the same argument applies for Yk(w).

Let us define Op:q(Z) and Xp:q(Z) by

ep:q(z) a 43P(Z)9P'l(Z) " " Oq(z),

Xp:q(Z) M Xo:q(Z)6,eIo8.-(z), X 0.4(z)-Xo(Z) mod z9 +1,

where 0 p 5 q. The polynomial matrix ep,, (z) has a degree q--p+l. The polynomial vec-

tor Xp :q (z) has degree q, and is obtained by dropping from Xp (z) all terms of degree higher

than zq. Also note the useful properties.

[X(Z)6FOI(Z)]F02() = X(Z)OF[OI(Z)O2(Z)],

[XI (Z) + X2(Z)IOF0(Z) = [X I(Z)6F0(Z)] + X 2(Z)OFo(Z).

These properties and the fact that ep,:q(z) is completely determined by Xp:,(z) allow a divide-

and-conquer implementation of the generalized Schur algorithm.

Given Xp. 4(z), we can compute Op:q(z) as follows. If p =q, then we are successful,

and compute eOpp(Z)= o,(z). Otherwise, we choose an "appropriate" (see Sec 4) division

point r such that p < r < q, and try to solve the smaller sub-problem of finding ep._1(z),

given X,:_,-(z). Once we know eP:rI(z). we can compute X,. 4 (z) by

X, 4(z) = XO.WO(z )eFIoO:.i(z) = (X 0 .q(Z )OF 6 O@41_(Z )1OFOp6 , l(Z) (15a)

= XP,.(Z)OFeOP:,, t(z). (15b)

Now we again try to find ,:q(z) given X,:q(z). After we obtain e,:q(z). we can combine the

two results, e,,.,_(z) and 0,,,(z), by multiplication,

9p0(z) = (16)

Programming details of the above recursive generalized Sctr algorith am sjown in the

Appendix.

- . . m m mlmd
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The previous recursive description can be visualized nonre ursively using trees (see Fig I

and 2). Each node in the tree is annotated with the rules: "find", "apply" and "combine",

fp:p : Find p:p (z)

ap:q : X,:q(Z) := Xp. (z)®F1p,_l(z).

Cp-q : Opq(z) :=p:r_(z)r:q(z).

We traverse the tree in post-order (i.e., follow the order labeled on each node of the tree), and

evaluate the rules.

Now, we shall consider two examples in detail.

Example 4. Pseudo-Inverse of pre and post windowed Toeplitz Matrices.

Consider the matrix E3 in Example 1, where

16 84 13211 -1 00 0
TTT 8168 T1 0 3 2 1 1 -

4 8 168 0 0 3 2 1 1 -10

1 4 8 16 0003 2 1 1 -1

It is desired to find a displacement representation of (TrT)-TT. This can be done by the 4-

step recursive generalized Schur algorithm. The input to the algorithm is a generator

{XO(z), Yo(w)} of

[T T T r ]T

E 3 = - 01]

with respect to {(OFf,-b I where Ff =Z, (Z., Fb =Z.OZ,. The output,

(X4(z), Y4(w)I is a generator of (TTT)-ITT, with respect to {z, z . The computational

sequence is illustrated in Fig 1, where it is assumed that the division points were chosen suc-

cessively by 2, 1 and 3.

(1). f oo(z)[ 0= o ][ ] because Xo(z) = [4 O
(2). ao.1: Xl:(z) = X0.(z)Fe.0(z) = (4 + 2z, 2z][4,eo.(Z) = (4:, -2z]

. . . .. . . . ... ....................... . . . [4 + 2 z.,, ......



-121 -

CO:7
22

Co.3

10 C2.3 

2-21
4 Co..1 9~

2 1 3 5 6/7 8 1 1
fo ao.1 fl: I aoj-3 f2:2 a2.3 A33 aO,7

Fig 1. Sequence of Computations for Example 4.
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CO9

COA 13

aO914

c2.4 1 2

'5 C.).4 1~ I
al4

f~o c,.i fi~ fz.Af.3 a3-4 10

9

Fig 2. Sequence of Computations for Example 5.
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(3). fl:i 81: 1(z) = 2 2

(4 ). C O : o : (z ) = e0 :(z)Oe: ( z) - _2 ._. 2 .- 2 ]
,F IL-z /2 1

(5). a0 .3: X 2:3(z) = XO:3(Z)OFfEO:I(z) = _..[3z2 + 3z3/2, _z314]

(6). f 2:2: 82:2(z) - 1 ] [ 1] because X2g(z) = 2 -3Z, 0]

(7). a 2:3 : X 3:3(z) = X2:3(Z)O®F12:2(Z) = _.[3z3, z3/41

(8). f 3:3: E)3 3(Z)= 43~ _I/1

(9). C2:3: 82:3(z) = 92 2(Z) 33(Z) = 143. 1/2 1
24 z 4 .-z 2/24 z3/12-z/12

(10). c 0 .3 : e°:3(z) = e°:1(z)0 2 :3(z) -- / I 2 z31+ 1 z/41

,F1-4-3 _Z - 3/ 12+z/12 .-z2/24+1j
(11). ao:7 : X 4:7(Z) = [4+2z+z 2+z 3 14-Z414, 2z+z 2 +z 3 /4-z4/4]OFEO3 (Z)

= [(4+2z+z 2+z3/4, 2z+z 2+z3/4) - z4(1/4, l/ 4 )IjF/EOo:3(z)

= -z 4[(1/4, 1/4) 0)o 3(z) mod z 4]

- (z /[12-z 2/24-z 3/2, l-z12-z 2 24+z3/12]

Because TTT is symmetric, TF(. 3(w) = e 0 :3(w)Z, where 7, = Ie-1, and therefore,

Y4:13(W) - [(4+2z+z2+z314)+z4(3/4+z/2+z2/4-z4/4),

(2z +z 2+z 3/4)+z 4 (3/4+z /2+z 2 /4+Z 3/4-z 4/4)] OFb E0 :3(w)l

Z6_[l14z +z 2/24-3z 3/2+49z 4/24+1 lz 5/8+13z6/24+3z7/2,' 3 143

-3-z /2+z 2/8-2z 3/3+1 lz 4/8-13/24z5-z6/8-z 7/12].

Therefore,

(TTT)-T T = [L(x 1)LT(yl) + L(x2)LT(y ,], y 6

where L(xi) and L(yi) are the lower triangular Toeplitz matrices whose first columns are xi

and yi, respectively, and

x, = (0, -1/12, 1/24, 1/217,
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X2 = [-1, 1/2, 1/24, -1 1 12 ]T ,

y1 
= [0, 1/4, 1/24, -3/2, 49/24, 11/8, 13/24, 3/21T,

Y2 = [-3, -1/2, 1/8, -2/3, 11/8, -13/24, -1/8, 1/121.

Remark 1. For a symmetric generator of length 2 with 13 1, the 2 x 2 polynomial matrix

@(z) in (14) can have the form (hyperbolic reflection)

[ chiz shil

Oi(z) = -sh i 2 -zch' chi2 - Shi2 = 1.

Let

[ I.I(z) E1,2(z)1

Op:q(z) -- p(z)p+p1(z) • • q(Z) a )2.1(z) 8 Z2(z) J
Then, by induction, one can easily prove that

Zq-p+IoI.(Z-1) = (--)q-p+l9 2 .2 (Z), Zq -P+' 1 .2 (Z-I) = (-l)q-p+192'1(P).

Therefore, we need to compute and store only two entries of Op:q(z).

Remark 2. For an unwindowed scalar Toeplitz matrix, the matrix E2 in (3) has displacement

rank 4, whereas the matrix E3 has displacement rank 5. Therefore, when we solve Toeplitz

least squares problems, it is more efficient to find a displacement representation of (TrT)-T

rather than of (TT)-ITT. With the notation in (4), the matrix E2 for an unwindowed scalar

Toeplitz matrix T = (ti.j) r R' (m a n) has a generator [14],

w= T /Tt1 1It 11, W2 = t 2 , w 3 =ZNZ.TW, w 4 =Z1,

v1 =v 3 =e l/ lt 11, v2 =v 4 = 0 .

where 11.11 denotes the Euclidean norm, and el is the vector with I in the first position, and

zeros elsewhere.

Example 5. Displacement Representation for the inverse of a Sylvester Matrix.

Let T denote the following Sylvester matrix,
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20010'

12021
T --- 3 1 2 1 2 (17)

03111

0 0 3 0 1,
and suppose that it is desired to obtain a displacement representation of T- 1. Then the

appropriate extended matrix is

E,=[ j , (18)
and it is easy to see that the following {Xo(z), Yo(w)) is a gener.,or of E, with respect to

[ FI, -Fb }, where Ff = Z5 EZ 5, Fb -Z 3eZ 2eZ 5;

XO(z) r- [X1 (Z), X 2(z), x 3 (z)], Yo(W) =[Y(W), Y 2 (W), Y 3 (W)]

x(z) =2 + z + 3z2 -z 5, x2(z) = 1 + 2z +z + z - z, x3(z)=1, (19a)

yy(w) 1, y 2(w) = w 3 , y 3(w) = w 5  (19b)
Now the 5-step recursive generalized Schur algorithm gives a desired generator of T- 1, with

respect to [Z 5 , Z 5}, and a possible computational sequence is shown in Fig 2, where the divi-

sion points are chosen successively as 2, 1, 3 and 4.

z 1/2  -1/2j ' ( W)= w O]

0). o-0 @OO~z= 0 1 0 WO. w12100 0 1w/2 01

(2). ao:1: Xl:j(z) = [2z, 3z/2, -z/2], Y1:.(w) = 1w, 0, 01

(3). f: =  0 1 0 , I(w))= 3w/4 1 0
0 0 1 " -w14 0 1
z 2 -3z /4-1/2 z /4-1/2] w 2  0 0

(4). CO.: 10:(4) = 0  Ir0 /2  I OPOt(w) =  w2/2+3w14 10

0 0 1 w2/2-w14 0 1

(5). a0 :4: X 2 :4(Z) = [2Z2+Z3+3Z 4, -5z 2/4-5z3/4, -5z 214+3z314]

Y2:4(W) YO:4(W)GF"'O:I(W)
- [(1, 0, O)'P . 1(w) mod w3] + w 3[(O, w, )pl.(w) Mod w21

= [w 2+3w 4/4, w 3, 0]

[z 518 518] [
0 1 0 -5w/SO 1

0 1
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(7). a 2:4: X3.4(Z) =12z 3+Z4, _5 Z3 /8+15z4/8, IIZ3 /8+15z 4 /8),

Y3:.4(W) =2()F"F2W

= (W2, 0, 0)'F 2:2(W) Mod W31 + W3 [(3w/4, 1, 0)'V2:(w) mod W2]

= -5w 4/8, W3, 01

(8). f 3:3: 933 Zz 16/5 11/51, 'P3:3(W) = W 0 0

0 0 1 -1JI
(9). a3:4: X4 :4(Z) _5Z 4/8. 7Z 4, 6Z4 1, Y 4:.4(W) =[W

4, -5w 418, 01

[z /(2,F2) 28/(542-) 615 1[w /(2,.r2) 51(16-F2) 0]
(10). C4:4: 84:4(Z) = -5zl(16-lFi) 1/(2,F2) -3/4 'P4 :4(W) = -28wI(5-,r2) 1/(242-) 0

0. 0 1] -1242w/5 0 1J
After evaluating, C3:4 , C2 :4 and COA, we obtain e04(Z) and To0 (, and finally

(14). ao.q: XO.9(Z) = (1 Z), X2(Z), X3(z)1OFf(e: 4(Z)

= z5 [(-1, -Z3, o)OFIEo:4(z)I

= Z5[(-1, -Z3, 0)9o0:4(Z) mod Z51 = z5[u1(Z), U2(Z), U3(Z)1,

where

u ,(z) = -Z I(2ql~-z 2/(2V2)+Z 3/,r2 + Z412

U2(Z) = 41(5,F2) + 4zl42& + 16z2l(54F2) - 28z3/(5'lr2) - 28z4/(542-)

U3(Z) = 2/5 + Z/5 + 2Z2/5 + Z3/5 - 6z4/5.

YO-(W) = fYI(W), y2(W), Y3(W)lOFI'0:4(W1)

= w5[(0, 0, l)OFYO:4(W)I =W 5[V1(W), V2(W), V3(W)1,

where

1(w) = -1242w/5 + 12w2/(542) + 2w(5?)-12w4/(5 2),

v2(w) = -wli42 + w2/(2-vr2) + w3/(242-) - w/22)

V3(W) = L.

Therefore,

w hanvie euvcors w ose tmo entih coefficient of zj- and wj'~ of

ui~) ad V(W), respectively.

03
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Remark 1. If we had chosen the displacement operator Ff = Z5 iZ31Z 2, Fb = Z 3 0z 2 ez 5

for the matrix T in (17) we would have the same generator (19) for EI, but the obtained gen-

erator of T-1 would be the one with respect to [Z34Z 2, Z5} rather than with respect to

{Z5, Z5 ). The displacement ranks of T-1 with respect to both displacement operators are 2,

but the above procedure gives non-minimal generators of length 3.

Remark 2, The following extended matrix

[- b], T = Sylvester matrix (20)

also has a displacement rank of 3. One could as well obtain the solution T-b directly by

applying the recursive generalized Schur algorithm to (20); the last column of X, where [X, y)

is the computed generator of T-b with respect to (Z., 1), can be shown to be the solution

T-'b.

4. Polynomial Products with Fast Convolutions.

The product of two polynomials of degree d, and d 2 can be performed efficiently using

d a d1 +d 2+l point fast cyclic convolution algorithms [4]. Among others, fast Fourier

transformations (FFr's) can be used for convolutions, and Ammar and Gragg [2] carefully

examined the use of FFr's for a doubling algorithm for square Toeplitz systems of equations.

We shall only consider the subtle complications that arise in the recursive generalized Schur

algorithm in this chapter.

The polynomial matrix-matrix product of (16) needs a( of q-p point cyclic convolutions.

The polynomial vector-matrix product of (15b) has a 2 of scalar polynomial products of the

form. x(z)0,j8(z), where x(z) is a polynomial with nonzero terms of zP, zP+t, • •, zq. Let

us assume that

0 <81 <'.<S, :<p <S8j j < -.4<8, 5r< 8, +4<, < St < < '' 8N.
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Then

x'(Z) a X(Z)OFfeO(Z) (21a)

= [zgtxt,,(z) + za *Xt+2(Z) + - + z 'x,+I(z) + + z xt+1(z)]JetFO(z) (21b)

= [z8x1 .+(z) + • + z8'-x,(z)]O@f(z) (22a)

+z '[x,+ 1(z)O(z mod zo" ' ] (22b)

+ z8 ''[x,+ 2(z)O(zl mod ZN 2]  (22c)

+ z8'[xt+,(z)O(zr') mod z4 ]. (22d)

The terms in (22a) do not need to be computed because these terms will be summed to zeros

after adding all the partial sums in the vector-matrix multiplication of (15b). Recall that x(z)

has degree ni, and O(zO) has degree P(q-P+). Therefore, the product xi(z)O(zP) from (22b) to

(22d) can be performed by

2nj+1 point cyclic convolutions if degree[O(z O)] k degree[x (z)],

ni+P(q-P+)+ 1 point cyclic convolutions if degree[0(z P)l < degree[xi(z)].

Remark. Notice that two d/2 point convolutions take cdlog(dl2) flops if one d point convolu-

tion takes cdlogd flops. Therefore, the polynomial product (21) is more efficient for the dis-

placement operator F1 with more sections, because such displacement operators break a long

convolution into many smaller convolutions. Therefore, for a given matrix we prefer to choose

a displacement operator with as many sections as possible, while keeping the displacement

rank minimal. Also we remark that the first and last terms (22b) and (22d) need smaller point

convolutions.

If the dimensions of the matrix are powers of 2. then we can always choose the center

division point, r = r(p +q )/. This balanced division (or doubling) gives the least number of

computations, in general. For this case, let Ti mp-q, and T(q) denote the number of compu-

tations for one recursion. Then
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T(Ti):g 2T(12) + W(ij), W(1) 0 (a3lllogq),

and therefore, one can show [11 that the k-step recursion takes

T(k) < 0 (a3 klog2 k).

However, in most cases the doubling is not possible, and for such circumstances, the

desirable choice of r is such that r-p and q-r+l are highly composite numbers (so that fast

convolution algorithms can be applied efficiently), as weln as r is close to (q-p)/2 (so as to

achieve balancing).

Matrix-Vector Products using Displacement Representation.

The final step of finding solutions for linear equations is the matrix-vector multiplication

S b, given a displacement representation of S e R'" .

S= K(xi, Ff)KT(y,, F"), (23)
i-I

where the length a is a multiple of the block size P3, a - [3, say, and

SN M N
F'f !74 , Fb iz,, m=lmi, n=fni.

i=1 i-I

The expression in (23) can be rewritten in the block displacementform

a
S = YKp(X, Ff)KT(Yi, Fb), Xi e R' 4 , Y e R 4 , (24)

i-I

where

Kp(Xi, F1 ) = [Xi, F/ Xi, F/ 2X, • • F/P -"Xj] E R "  (25a)

Kp(Yi, Fb) - [Yi, Fby, Fb2 yi," Fb[(I>"lyj ERn'. (25b)

Furthermore, because Ff and Fb have M and N sections, respectively, (25a) and (25b) have

the forms

Kp(X,, z,) 0 Kp(YI,Z.P) 0

K ,(X 70,Z.) 0 Kp(Y2.i, Zj ) 0
(p(XX, F) =2 M 0K YYv Fb ) 0

Kp(X.j, 7.0 ) o Kp(Y vj, 0)

PON NJ l mnnnunmmnnlm ••N nn
n nn
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where Kp(X, Z) is the block lower triangular Toeplitz matrix with the first column block X.

The matrix 0 denotes a null matrix of appropriate size such that Kp(Xi, Ff ) and Kp(Yi. Fb)

are m x n and n x n matrices, respectively.

To see how to use convolutions for the product,

Kp(X i , Ff )KT[ (y,, F b)b,

it is enough to consider matrix-vector multiplications of the form Kp(X, ZP)b. Note that

Kp(X, ZP)b can be expressed as sum of P products of scalar lower triangular Toeplitz matrix

and vectors. As an example,

ao c0  bo a0  fbo c0  b

a, cl b, a, ao 0 c1 co

a 2 c2 a0 co  b2  a2 a, a0  b2 c2 C1 co b 3  (26)

a 3 c3 a, c L b 3  a 3 a2 a, ao .0 L C3 C2 C1 Co 0

The multiplications in the right sides of (26) can be done by fast convolutions, and therefore,

so can the multiplication Sb.

5. C including Renrks.

We have presented 0 (3nlog 2n) algorithms for the determination of exact and least

squares solutions of linear systems with matrices having (generalized) displacement rank c.

Such algorithms for exact solutions have been studied by several authors, most recently by

Ammar and Gragg [2] for Toeplitz systems. They also made a very close study of the imple-

mentation of the convolution operation in an attempt to obtain the smallest coefficient; we have

not attempted so close an analysis for the morm general algorithm in this chapter. Nor have we

attempted a numerical error analysis of the algorithm; nevertheless one might hope that numeri-

cal refinements devised for the Schur algorithm (see e.g.. Koltract and Lancaster ( 17]) may be

carried over to the divide.and-conquer framework as well.
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APPENDIX

We shall summarize the explanation in Sec 3 using a Pascal-like recursive procedure.

First, note that the polynomial ep:,(z) (and 'Pp.4 (z)) has q-p+2 terms. The first column of

ep:q(z) has terms ranging from degree z to zq -- + , and the other columns have terms from I

to zq-P . Hence, by shifting the first column by one position, we can store (p:q(z) and T,..(z)

in the array "Poly" from p to q slots inclusive:

Poly: array [l..a, 1..a, O..MAX-l] of record

0: coefficients;

W: coefficients

end;

The computation of 19, 4 (z) is sequential, i.e., once we compute 0,.,(z), we do not need to

keep ep, 1(z), and therefore, the array "Poly" can be kept as a single global variable.

The polynomial vector X, ,(z) has q-p+1 terms, and therefore, can be stored in an array

type GENERATORS:

type

GENERATORS = array [..a, O..MAX-IJ of record

x: coefficiemt

y: coefficient

end;

However, Xpq:(z) cannot be kept as a global variable, and local copies should be maintained

until we compute X,., (z).

Now we can describe the recursive generalized Schur algorithm as follows.
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Algorithm (Recursive k-step Generalized Schur Algorithm).

Input: Generator of E, (Xo(z), Yo(w) }; displacement operator I 6,P, ®p ; };

Number of steps, k.

Output: Generator of S, {Xk (z), 1" (w)j;

procedure RecursiveSchur

var

G, LowerG: GENERATORS;

begin

Find(O, k-1, G);

Apply(O, k, n, G, LowerG);

return (LowerG)

end

The procedure Find(p, q, G) computes Opq( 2), and 'P,:,(w) given {Xp:q(Z), Ypq(w)J, and
the procedure Apply(p. r, q, G. LowerG) returns LowerG = IX,.(z), Y,:q(w)) given G =

procedure Find(p, q: index; G: GENERATORS);

var

r : index;

G, LoweiG: GENERATORS;

begin

ifp=q en begin

Compute O,,,(z) and F;w)

return

end
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r := appropriate integer close to r(p +q )/1;

Find(p. r-l, G);

Apply(p, r, q, G, LowerG);

Find(r, q, LowerG);

(* Use fast convolution for polynomial products *)

ep:,(z) : -_(z)@,,(z);

T'p:q(w) :Yp:,_l(W)Yr(w)

end

procedure Apply(p, r, q: index; G: GENERATORS; var LowerG: GENERATORS);

begin

(* Use fast convolution for polynomial products *)

X.:q(Z) :=xp:,(Z)6F, P._,(z);

¥.:,(w) := YP'-q(W)®6F"/p:'_(W);

Lowers:= {X,:q(z), Y,:,(w))

Free the storage of [Xp:q(Z), Yp:q(w));

return (LowerG);

end
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Chapter 6.

Concluding Remarks.

After a summary of the main features of our approach to fast algorithms, we shall briefly

note some areas for further investigation.

1. Summary of Results.

We introduced two different displacements of a matrix A e RwxA defined as

V(F m aA _ Ff AFbT, (1)

or

A(F.I.b.A .Ff A - AbT ,  (2)

where Ff and Fb are chosen matrices. We call the matrices V(b.F6) and A(Ff.Fl ) the Toeplitz

and Hankel displacements of A with respect to the displacement operators (Ff, Fb ), respec-

tively. We say that the matrix A is structured if V(FF,,A has low rank (close-to-Toeplitz) or

A(Ff.,)A has low rank (close-to-Hankel), where "low" is with reference to the dimensions of

A. The ranks of the displacements V(Ff f)A and "(Ff F)A are called the displacement ranks

of the matrix A. The computational complexity (as well as the space complexity) of fast algo-

rithms is proportional to the displacement rank of the matrix. Therefore, the displacement

operators should be chosen so that the displacements have ranks as low as possible.
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Invariance of Displacement rank under Schur complementations.

A basic property is the following. Let the block matrix

M=[CD]

have Hankel (Toeplitz) displacement rank a with respect to lower triangular displacement

operators, {Ff, Fb I. Then the matrix,

0 0, S a D - CA-'B, the Schur complement of M with respect to A,

has the same Hankel (Toeplitz) displacement rank a with respect to (F!, FbI. This result has

many consequences. For example, by considering the matrices

[ A I], [ I A], [ 7A]
O 0 AT o AT O

we can see that the inverse A- ' and the product ATA also have low displacement rank if A

has low displacement rank.

The displacement structure of a matrix is captured by its generators viz., a matrix pair X,

Y that satisfies the displacement equations

V(F,,)A = XYT, or A(F.FA = XYT , X E R" x", Y r R"xa .

The inverses and Schur complements of structured matrices can be obtained by operating on

their generators. Doing so requires 0 (wnn) computations, where a is the displacement rank

of A, whereas working with the matrix A itself requires 0 (inn2) or 0 (M2n) computations.

We described such algorithms for QR factorization, inversion, regularization, and solution

of least squares problems. The key to obtaining these results is a combination of (efficient)

algorithms for successive Schur-complementation applied to certain judiciously chosen "compo-

site" (block) matrices.

We shall briefly outline the resulting generalized Schur algorituns.

' • ... . - --- m M I 1 himIi ,,
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Generalized Schur Algorithms.

To efficiently compute the Schur complement D - CA- 1 B of the matrix

M=C D

we first need to obtain a proper generator for M, i.e., a generator of the form,

* 0 0 * 0 0 .

X Y= (3)

for the Toeplitz displacement (Chapter 2), and

*0 -0 0 0"

,=Y (4)

for the Hankel displacement (Chapter 4). A non-proper generator of A can be converted to a

proper one in several ways. One is by applying the following matrices,

C S2

Si = -s 1 c2 +ss 2 =1 (5)

which can be used to null out different entries by appropriate choices of (c, S1, s2}. Proper

generators (3) or (4) can be obtained by using the matrix (5), or its special cases: Givens rota-

tions, hyperbolic rotations and elementary matrices. By post-multiplying X and Y with a

sequence of appropriate matrices Sj,, we can transform X and Y to proper form with O (am)

computations.

The next step is to modify one column of X and Y. Repeating the same step (i.e..
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transformation to proper form followed by a modifications of the column) r times, where r is

the size of the square block A in M produces the generator of the Schur complement

D - CA-'B.

Displacement Representation of Composite Matrices (Chapter 3).

The above algorithms can be applied to the block matrices

A[T 1]1 [T T I], [T, T2] [TTT TT] [T TTTT]A = 1 0 1 0 T T~ 0 T I 1 0

to obtain generalized Gohberg-Semencul formulas or, equivalently, displacement representa-

tions, of the matrices,

T- ' , (T T) -1, TTTI'T 2, T(T T)-ITT, (TTT)-ITT.

Fast Matrix Factorizations and Solutions of Linear Equations (Chapters 2 and 4).

Another use of the generalized Schur algorithm is to obtain fast solutions for various

equations of structured matrices such as Toeplitz and close-to-Toeplitz matrices, Hankel and

close-to-Hankel matrices, and Vandermonde matrices.

Divide-and-Conquer Implementations (Chapter 5).

It turns out that the generalized Schur algorithm can be easily implemented in divide-

and-conquer fashion.

2. Some Known and Unknown Numerical Properties of the fast Algorithms.

In this section, we shall present a rather casual description of the numerical properties of

the fast algorithms considered in this thesis.

2.1 Levinson Algorithm.

The Levinson algorithm was analyzed by Cybenko [6]. Bunch [4) clarified Cybenko's

work by introducing the concept of three different numerical stabilities.
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Stability: An algorithm for solving linear equations is stable for a class of matrices M f for

each A e M and for each b the computed solutiont to A x = b satisfies A=bfor some

and 6, where A is close to A and 6i is close to b.

Strong stability: An algorithm for solving linear equations is strongly stable for a class of

matrices M if for each A e M and for each b the computed solution t to A x = b satisfies

A = 6, whereA ee M and A and 6 are close to A and b, respectively.

Weak stability: An algorithm for solving linear equations is weakly stable for a class of

matrices M if for each well-conditioned A e M and for each b the computed solution 2 to

Ax = b is such that IIx-tI1/lIxIl is small.

According to the above definitions, strong stability implies stability and stability implies weak

stability.

Sometimes it is hard to prove that an algorithm is stable. Bunch pointed out that

Cybenko only proved that the Levinson algorithm is weakly stable. To see this let us consider

Cybenko's result and the classical perturbation theorem (see e.g. [18]).

Cybenko's result: The computed solution t to Tx = b will always have a small residual,

r n Tt - b for "well-conditioned' symmetric positive Toeplitz matrices.

Perturbation Theorem: If A x = b and A = , where A is nonsingular, and if

IIA-A IIlIIA-111 < 1, then A is nonsingular and

IIlx-7, I iA) [IIA-A 11 Ilb-6ll

xIA-, IIAII + 7 lbl1I - xA) IIAil

From Cybenko's result and the above theorem, it is easy to see that the Levinson algorithm is

weakly stable, because
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FIt-x- Unri'

If Cybenko had shown that r = TR - b is small for all symmetric positive Toeplitz matrices

(including ill-conditioned matrix) then he would have proven that the Levinson algorithm is

stable. It is unknown [4] whether the Levinson algorithm for symmetric positive-definite Toe-

plitz matrices is stable (in Bunch's sense) or not.

2.2 Schur Algorithm.

Numerical properties of the (generalized) Schur algorithm are also not fully understood

yet. However, it would not be a wild conjecture that the Schur algorithm is also (at least)

weakly stable because the Schur algorithm and the Levinson algorithm are closely related (see

Chapter 2). To compare the Schur algorithm with the Cholesky algorithm, we generated the

ill-conditioned positive-definite Toeplitz matrix (See Appendix for how to generate ill-

conditioned positive-definite Toeplitz matrices),

1 .99 .999602 .98922 .99847

.99 1 .99 .999602 .98922

T= .999602 .99 1 .99 .999602 , c(T) = 2.9 x 107.
.98922 .999602 .99 1 .99

.99847 .98922 .999602 .99 1

Let L, and L, denote the lower triangular factors of T computed with single precision arith-

metic by the Cholesky algorithm and the Schur algorithm, respectively. Our simulation results

show that

II T -/E L 12 = 7.5 x 10 s , 11 T - EAT 112 = 8.9 x 10- (6)

Therefore, we cannot exclude the possibility that the Schur algorithm is even stable in Bunch's

sense (see [10] also). Moreover certain "thresholding strategy" in which "small" reflection

coefficients are set equal to zero can substantially improve the numerical behavior of the Schur

algorithm [3], [13].
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23 Troubles associated with large Reflection Coefficients.

Cybenko obtained posteriori bounds on the condition number of Toeplitz matrices in

terms of the reflection coefficients [6] (see [13] for a more recent result). For close-to-Toeplitz

matrices large reflection coefficients indicate a large condition number of the matrices.

It is well-known [2], [171 that hyperbolic rotations with large reflection coefficients give

numerically poor results. To see this consider a single 2 x 2 hyperbolic rotation;

Wa, b'l = [a. bl.H, H =-sh ch "(7)

where

a' = [a I, a2 , , a.IT, b' = [0, b2, , b, IT.

Let us slightly perturb the 'data' a and b by g, and t2, and find the size of iTj, the result-

ing relative perturbation in the 'results':

[a'(l+Tll), b'(I+TI)] = [a(l+g), b(+.t2)]-H.

Then clearly

[chIx, -shILI]
[1ia', T2b'] = [a, bI -shi 2 ch " (8)

Therefore

II[111 a', 112b'I1F < [2(ch 2 + sh2).g2j].II[a, b] I F = 2 .{ + k 2 ].I1ia. b]lIIF, (9)

where IL = max(;l 1, IlL21), and k is the reflection coefficient, k = shIch = bIla1. From (9),

one can see that a hyperbolic rotation gives an inaccurate result if the reflection coefficient k of

H is close to ±1, i.e., a I' is close to zero (which is not surprising because of the large

difference in the two eigenvalues of H).

To see the numerical difficulty associated with large reflection coefficients, we generated

a positive-definite Toeplitz matrix with the following reflection coefficients (see Appendix),
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K = [0, 0.99999, -0.99999, 0.99999, -0.999991.

The resulting matrix has condition number xT) = 6.6 x 1017. When we applied the Schur

algorithm with double precision arithmetic to re-compute the reflection coefficients, we

obtained

/f = [0, 0.99999, -0.99998999999710, 0.99998958118522, -0.944500342249231

which was quite different from the "true" reflection coefficients. For some problems (e.g.,

orthogonal filter synthesis [16]), what we need is only the reflection coefficients rather than the

factorization.

2.4 Ill-conditioned Matrices can have small Reflection Coefficients.

A ill-conditioned matrix does not always have large reflection coefficients. To see this let

us define the two matrices

10.5 0.21 [ 1 00].
T= 0.5 1 o.5 s 0 1 . (10)

0.2 0.5 1 lS 0 1

One can check that

1 0.5 10+0.2
A * SST 0.5 1 5×10%0.5 N LL T.

W+0.2 5X10 .5 10000040001

where

1 0 0

L 0.5 7-5 0
1No .2 0.4 3

The condition numbers of T and A are

ic(T) = 4.7, i(A) = 1.5 x 102.
The matrix A also has displacement rank 2 because S is lower triangular Toeplitz (see Chapler

3 or [121). Furthermore, the matrices A and T have the same reflection coefficients,
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K = [0, 1/2, -1/151. (11)

Let E4 and E4 denote the lower triangular factors of A computed with double-precision arith-

metic by the Schur algorithm and the Cholesky algorithm. respectively. Our simulation experi-

ment gives rather surprising result:

IlL - E,1 =2.2x 10-"6, IlL -EII =6.9x 10-7, (12a)

IIA - . iI = 2.2 x 1(- 6 , 1IA - 4  1 1 = 1.1 x 10-16. (12b)

As far as the bounds in (12a) are concerned the Schur algorithm performs far better than the

Cholesky algorithm (beware of the matrix products STST, however).

25 Generalized Schur Algorithm and Sweet's Algorithm.

Sweet's algorithm [19] behaves quite differently from the Schur-type fast QR factoriza-

tion algorithms. Let Q, and R, be the matrices computed by Sweet's algorithm, and let Q,

and R, be the matrices computed by our algorithm. The simulation result by Luk and Qiao

[151 for the following matrix,

27 9 3 -23+t]

9 27 9 (
27- - 3 9 27 9 0 7 (3

-23+t 3 9 27 J
shows that

I IQR,,-T IIIIITI1 F = 5.9X 10- 7 , 1 QQQF,-I 1 1F1l/11 I = 2.6x10 -17 .
However for the same matrix, our algorithm gives a poor result:

IIQR,-TIIFIITll = 3xl1 - 16, IIQTQ.,-I IF/IIII IF = 0.48.

The inaccurate Q, might be understood along the lines that (i) TTT is ill-condiftd, (ii) the

last reflection coefficient is very close to one and (iii) our fast QR factorization algorithm, in

fact computes the paial uiangularization (Chap 2) of

[TT T )7
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Although Sweet's algorithm works well for the ill-conditioned matrix (13), Luk and Qiao

have shown that Sweet's algorithm did badly for the following well-conditioned matrix

(ic(T) = 5.6),

8 4 2 1-t

4 842 
(4

T=--24 t = 10-  (14)

24 2484
I-t 2 4 8

The simulation result with our fast algorithm for the matrix T gives a very accurate result

probably because TTT does not have large reflection coefficients.

2.6 Numerically Stable Fast Algorithm for Indefinite Matrices.

For indefinite matrices, the leading principal submatrices can be (close-to) singular. It is

easy to find a well-conditioned indefinite matrix for which the Schur or Levinson algorithm

perform badly. There are some previous works [51 that might be useful for finding a numeri-

cally stable generalized Schur algorithm.

3. Other Open Research Problems

3.1 Indefinite Structured Matrices.

There are no doubt other special algorithms that can be put into array form in the way we

have described. In particular, we might mention algorithms for determining the mot distribu-

tion of polynomials by studying the inertia of certain related matrices called Bezoutians (see

e.g. [14]). One feature of such matrices is that they may not be strongly regular (strongly non-

singular) in the sense that not all leading minors may be nonzero. This has been an often tacit

assumption in most of this thesis. Solution methods are known for some of these problems,

especially in the Hankel case, and it would be interesting to examine them from our point of

view.
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3.2 Array form of the RLS Algorithms.

Another area of exploration would be to see how to obtain array forms for the various

fast lattice and transversal filter RLS algorithms.

3.3 Accelerating the convergence of the Schur Algorithm.

The Schur algorithm is also widely used for the spectral factorization (see e.g. [91). For

such applications, it would be useful to find a way to accelerate the convergence of the algo-

rithm.

3.4 Doubly Structured Matrices.

In many signal processing applications, we encounter so-called "doubly structured"

matrices (e.g. block-Toeplitz matrix with Toeplitz blocks). All known fast algorithms do not

fully utilize this additional structure.

3-5 Low displacement rank Decompositions.

Let A and B have displacement ranks a, and ce2, respectively. By considering the matrix

[2o]
one can check that the matrix AB has displacement rank less than or equal to at + a2 + 1.

For a given matrix M with displacement rank t is it possible to lind matrices M, and M2,

whose displacement ranks are close to a/2, such that M = MIM 2?

APPENDIX

Given a sequence of reflection coefficients

K=[ko,.k, k2,• ,kj, ko=O,

we can generate [71, [11] a symmetric positive-definite Toeplitz matrix using the trmmission

line shown in Fig 1. We excite the quiescent transmission line (i.e. zero initial condition) with
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the impulse sequence

[1, 0, 0, • ].
Then the output sequence (see Fig 1),

[Co, CI, C2,'-'], co R

gives the desired Toeplitz matrix

T = (ci-j).

Because only orthogonal rotations are used, this procedure is numerically stable no matter how

large the reflection coefficients are.

0001 -I-k1

k i '~ -kj

C3 C2 Cl

Fig 1. Generating Toeplitz Matrix given Reflection Coefficients.
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